Simulation of magnetic field produced by induction in toroid and solenoid using GeoGebra software
DOI:
https://doi.org/10.63332/joph.v5i2.406Keywords:
Solenoid, toroid, magnetic field, Ampere’s law, magnetic simulation, GeoGebra simulation, electromagnetic simulationAbstract
In today’s era of modernity and the appearance of new knowledge-construction approaches supported by technological tools such as A.I., various instruments contribute to enhancing educational quality like GeoGebra, an open-source software with extensive capabilities for simulations. This research established three objectives, all of which are answered in its conclusions. The study focused on simulating magnetic fields with predefined geometric shapes, analyzed using mathematical principles. Computational simulation was the primary methodology, involving the implementation of Ampere’s law, Biot-Savart law, and electromagnetism, as well as their applications in solenoids and toroids. The simulations were developed using GeoGebra’s virtual simulation tools and Java Script application. As a result, a functional simulation was created to model the behavior of a normally closed solenoid valve, allowing manipulation of parameters such as radius, length, number of turns, diameter and current intensity. Similarly, a toroidal transformer simulation was developed, enabling adjustments to coil count, toroidal surface area, voltage, primary and secondary toroids to control each parameter in the respective model. The discussion highlights that similar applications have been successfully developed by other researchers, demonstrating their effectiveness in supporting university students’ learning. The study concludes that simulations significantly strengthen foundational physics knowledge in engineering education.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
CC Attribution-NonCommercial-NoDerivatives 4.0
The works in this journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.