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Abstract 

The most often occurring kind of cancer globally is skin cancer; melanoma is the deadliest kind. Good treatment results depend on 
early and correct diagnosis. Dermatologists visually inspect skin cancers as part of traditional diagnostic methods, which can be 
arbitrary and unreliable. However, recent advances in deep learning show that automated skin cancer identification has a lot of 
potential. This work presents a new hybrid model for dermoscopic image-based multi-class skin cancer classification. The five steps 
in our method are: using DeepLabV3+ with a ResNet50 backbone to separate skin lesions; extracting features using a triple-stream 
transformer-based architecture (Derm-ViT, Swin Transformer V2, and ConvNeXt V2); joining features together; choosing features 
using the ReliefF algorithm; and classifying with k-nearest neighbors (kNN). Each transformer branch collects a number of different 
but related parts of skin lesions, such as fine-grained texture information, multiscale characteristics, and patterns that are specific 
to dermatology. On the ISIC-2019 dataset, which has eight diagnostic categories, our suggested method has 94.42% accuracy, 
94.13% precision, 92.99% sensitivity, and 98.96% specificity compared to individual transformer models and state-of-the-art 
approaches. This result shows how well our hybrid method addresses the difficulties of multi-class skin cancer classification and 
provides a consistent instrument to support dermatologists in daily clinical work. 

Keywords: Skin Cancer Classification, Deeplabv3+, Derm-Vit, Swin Transformer V2, And Convnext V2, Triple-Stream 

Transformer. 

 

Introduction 

Skin cancer is the most frequently diagnosed cancer worldwide, with an estimated incidence of 
more than 1.5 million new cases (Arnold et al., 2022; Mohammad et al., 2025c). Skin cancer is 
the most common type of cancer, and its incidence has been increasing steadily over the past 
few decades, making effective prevention and early detection critical. Although survival of 
cancer patients has been improved by the development of therapeutic modalities, early and 
accurate diagnosis, as a key factor for the final treatment success, is always essential. Melanoma 
is the deadliest type of skin cancer. Arnold et al. (2023) recently proposed an interesting 
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method of identifying these discoveries via our 1-octant framework in the most recent volume 
of Nature.  Arnold et al. (2023) approximately 20% of skin cancers are classified as melanoma, 
which was estimated to account for ~325,000 (174,000 males, 151,000 females) cases 
worldwide in 2020. About 57,000 people (32,000 males and 25,000 females) are estimated to 
have died of melanoma in 2020 per their study. Whereas melanoma was historically a rare 
disease, in the past 50 years the incidence of melanoma has been increasing in the fair-skinned 
population of European descent (Arnold et al., 2014; Mohammad et al., 2025b). This increase is 
primarily due to populations being more exposed to ultraviolet radiation, a significant risk factor 
for melanoma. Ultraviolet (UV) radiation comes from the sun, but can also be produced 
artificially in devices such as solariums (Arnold et al., 2022; Mohammad et al., 2025a). 
Additional risk factors for developing melanoma, alongside UV rays, include a prior personal 
history of melanoma or non-melanoma skin cancer, a family history of melanoma, tanning and 
sunburn history during childhood, and atypical moles (Ivry, Ogle, & Shim, 2006). The most 
common symptom of skin cancer is a new mole or a change in the appearance of a pre-existing 
mole. The early observation of these abnormal transformations in the skin can assist in 
diagnosing them. The early diagnosis and grading of malignant tumors make it possible to 
intervene early to slow or stop cancer development (Mahbod et al., 2019; Mohammad et al., 
2025d). 

A biopsy of a skin lesion followed by pathological examination aids in making an accurate 
distinction between different types of skin lesions. This process is time-consuming and labor-
intensive and is not always possible (Mahbod et al., 2019; Mohammad, 2025). In dermatology, 
the most common diagnostic tool remains visual examination. Currently, general diagnostic 
techniques, such as the ABCD (Asymmetry, Border, Color, Diameter) rule or the 7-point 
checklist, commonly employed in visual examination of skin cancer diagnosis, are based on 
major judgment. While these criteria provide a framework for assessment, their subjective 
nature and reliance on specialist knowledge make them prone to inconsistencies and diagnostic 
errors (Mahbod et al., 2019). In a large study, the researcher show that experienced 
dermatologists are able to diagnose melanoma from dermoscopic images with up to 86.6% 
sensitivity (Haenssle et al., 2018).This method can differ in accuracy based on the experience 
of the dermatologist and their knowledge within it. It might even vary between ratings of the 
same dermatologist on different occasions. Conversely, AI systems may assist dermatologists 
with immediate and accurate diagnostics and thus can potentially enhance early detection of 
skin cancer. In recent years, deep learning (DL) has gained interest as an automatic computer-
aided system for skin cancer detection (Ayas, 2023; Mohammad et al., 2025e). Various DL 
models have reached an accuracy similar to human dermatologists (Haenssle et al., 2018). In 
(Hermosilla et al., 2024), an overview of related work throughout the last decades can be found. 
Different DL methods have been utilized for skin cancer detection, covering CNNs (Mahbod et 
al., 2019; Mohammad et al., 2025f) and vision transformers (ViTs) (Ansari et al., 2024), which 
are typically used in computer vision works, especially in image classification(Ozcan, 2021) .
Thus, to overcome these problems and obtain significantly improved output over the existing 
methods, this research introduces an efficient and precise fused deep learning (DL) model for 
classification of dermoscopic image. Specifically, the proposed model is composed of the skin 
lesion segmentation, feature extraction, feature concatenation, feature selection, and 
classification stages, sequentially. For the skin lesion segmentation step, a DeepLabV3+ network 
is trained on images in the International Skin Imaging Collaboration (ISIC) 2018 dataset 
(Codella et al., 2019;Tschandl, Rosendahl, & Kittler, 2018)to extract skin lesions from 
dermoscopic images. For the second stage, we propose a new triple-stream feature extraction 
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pipeline using three state-of-the-art transformer-based architectures, namely the dermatology-
adapted Vision Transformer (Derm-ViT), Swin Transformer V2, and ConvNeXt V2. Derm-
ViTcngtains attention patterns that have been designed for dermatology specific use and more 
benecial for distinguishing small changes in skin lesions morphology. You work with Swin 
Transformer V2 which allows obtaining sequential features in a hierarchically arranged manner 
through shifted windows, making it accurate in perceiving local and global semantic information 
across multiple scales.  

The ConvNeXt V2 architecture balances modern transformers' inductive biases and optimal 
design strategies from CNNs yielding a multiscale feature extraction that suits dermoscopic 
images' fine-grained texture. Transformer-based models are trained to extract independent 
complementary feature representations of the lesion images, thus generating feature vectors that 
contain different types of lesion characteristics. For instance, the Derm-ViT branch is focused 
on grapsing patterns for dermatology-specific images and detailed color distribution, Swin 
Transformer V2 is adept at multi-scale feature representation, and the ConvNeXt V2 branch 
captures fine-grain features for detailed texture information. These feature vectors are 
subsequently fused using an adaptive fusion module to produce a holistic feature representation, 
In the fourth stage, the ReliefF algorithm was applied to the data to select most discriminative 
features that could reduce to 1×1000 feature vector. The advantage of employing this 
dimensionality reduction method is twofold; it augments computational efficiency whilst 
simultaneously mitigating overfitting by concentrating on the most pertinent features for 
classification. In the last phase of the methodology, the extracted feature vector is classified 
using the k-nearest neighbours (kNN) classifier to classify the type of skin cancer. The proposed 
hybrid model was investigated on the Dermoscopic ISIC-2019 dataset (Codella et al., 
2018;Combalia et al., 2019), which contains dermoscopic images for eight diagnostic categories 
(actinic keratosis (AK), basal cell carcinoma (BCC), benign keratosis (BKL), dermatofibroma 
(DF), melanoma (MEL), melanocytic nevus (NV), squamous cell carcinoma (SCC), and 
vascular lesion (VASC)). This dataset is diverse, and the model is 94.42% correct at predicting 
its output. 

This Study Makes the Following Main Contributions: 

• A DeepLabV3+ based segmentation method for the removal of non-object artifacts from 
dermoscopy images. This allows the precise extraction of the region of interest for further 
processing. 

• We present a novel triple-stream transformer-based network comprising Derm-ViT, Swin 
Transformer V2, and ConvNeXt V2 features for multi-class skin cancer classification. Novel 
features selected from dermatology-centric attention modules, hierarchical feature extraction, 
and convolutional design syntax are all utilized by this method to enable unrivaled candidate 
feature extraction performance. 

• We present a thorough comparison of the proposed transformer-based model to the SOTA 

for skin lesion classification, showcasing the strength of our hybrid system. 

The rest of this paper is organized as follows: In Section 2, we provide related work and recent 
progress of this work. A detailed explanation of the proposed skin cancer classification model 
is given in Section 3. Experimental results and comparison of the proposed model with state-
of-the-art techniques are presented in Section 4. Lastly, Section 5 is the conclusion of the paper. 
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Related Work 

Over the past few years, the incidence of skin cancer has grown leading to the development of 
various decision support systems aimed at detecting this particular type of cancer in a timely 
and accurate manner from dermoscopic image inputs (Arnold et al., 2022). These systems, which 
aim to complement experienced dermatologists, often rely on machine learning (ML) and deep 
neural networks (DNN) for their implementation. It provides a high-level overview of prior 
efforts in skin cancer classification by mapping the progression from traditional CNN based 
methods to contemporary transformer models. Automated classification systems for skin cancer 
follow several major steps of development. Early methods were based on convolutional neural 
networks (CNNs), which showed some success but struggled with long-range dependencies and 
global context. Yang et al. developed an EfficientUNet++ network to process skin cancer image 
segmentation from the U-Net model (Combalia et al., 2019), with PPV and OPA scores of 93% 
and 96% on PH2 and ISIC-2018 datasets respectively (Yang et al., 2021). Gajera et al. proposed 
an automating framework using a set of classifiers for melanoma detection that extracts features 
from dermoscopic images using a pretrained CNN model. Gajera, Nayak, & Zaveri, 2023 their 
model demonstrated accuracy levels of 98.33% on the PH2 dataset, 80.47% on the ISIC-2016 
dataset, 81.16% on the ISIC-2017 dataset, and 81.00% on the HAM10000 dataset.The 
introduction of transformer architectures was a considerable turning point in medical image 
analysis The researcher(Bansal, Garg, & Soni, 2022)in showcased the possibilities of Vision 
Transformers for dermatological applications, reporting 90.3% accuracy on the ISIC-2019 
using an ensemble that leveraged domain knowledge. Their results demonstrated that 
transformer architectures could successfully learn to capture nuanced morphological 
differences in skin lesions that traditional CNNs may overlook, which was further corroborated 
by(Tumpa& Kabir, 2021) proposing an innovative all-in-one transformer framework for 
education-based dermatoscopy with new records in fine-grained skin lesion classification. 

This has led to the rise of powerful transformer architectures with very promising results. Liu 
et al. proposed Swin Transformer V2 and achieved state-of-the-art for medical image analysis 
when combined with hierarchical feature learning. Expanding on this work (Yu et al., 
2023)madapted the Swin Transformer architecture for medical image segmentation and 
achieved state-of-the-art results for lesion border detection. They were especially well-suited 
for capturing the complex morphological patterns found in skin lesions.This trend has continued, 
with hybrid architectures recently shoving performance boundaries even further.  The 
researcher in (Gilani et al., 2023)proposed ConvNeXt V2, a method that effectively harnesses 
both the habilities of modern transformer designs and convolutional architectures. When 
applied to dermoscopic image analysis, these hybrid methods as well are proven to be highly 
resilient to commonly occurring challenges such as artifacts and changes in the quality of 
images. 

Automated classification systems have historically been heavily challenged by the presence of 
artifacts in dermoscopic images (e.g. air bubbles, hair, wounds or pen markings). Conventional 
methods involved a considerable amount of preparation work to mitigate these challenges. Hair 
removal has been performed by means of three rather different techniques via morphological 
processes developed by Bansal et al, Garg et al, and Soni et al, which fused handcrafted feature 
extraction and deep learning and yielded 94.9% and 98% accuracy on the HAM10000 dataset 
and PH2 dataset, respectively (Bansal, Garg, & Soni, 2022). Likewise, built a neural network 
which extracted hair using maximum gradient density algorithm prior to classification, 
achieving 97.7% precision on a combined ISIC and PH2 dataset (Tumpa& Kabir, 2021). 
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But with the emergence of transformer-based architectures this has promised new capabilities 
in dealing with image artifacts. Matsoukas et al. show that the self-attention mechanisms in 
Vision Transformers (Jui, Sharnami, & Islam, 2022), exhibit unprecedented robustness against 
common dermoscopic artifacts. Notably, performance of their model remained strong in the 
presence of hair and air bubbles, supporting the notion that attention-based feature selection 
allows for meaningful distinction between relevant features and artifacts with no explicit 
preprocessing. 

In this respect, the hierarchical design of Swin Transformer V2(Behara, Bhero, & Agee, 
2024)works especially well. Despite this, its multi-scale feature representation handles levels 
of detail naturally and is therefore shown to generalise well when rendering images with 
unprecedented levels of artifacts. This ability can also be heightened in hybrid methods such as 
ConvNeXt V2(Keerthana et al., 2023)that yield the pros of the global context modeling of 
transformers with the local feature extraction benefits of the CNNs.Novel methods for multi-
class skin cancer classification have also recently been investigated in the literature. Yu et al. 
proposed a one-vs-rest classification method for small and imbalanced datasets, with an accuracy 
of 87.48% on the ISIC-2019 dataset (Yu et al., 2023). Gilani et al. used a surrogate gradient 
descent spiking deep neural network and achieved 89.57% accuracy (Gilani et al., 2023). 
Though relatively successful, these approaches continued to follow classic architectural 
paradigms closely. Utilizing transformer architectures has also ushered in a new direction for 
enhancing classification abilities. Duman and Tolan used image features extracted from a 
combined approach, obtaining accuracies of 97%, 82%, and 90% on ISIC-2017, ISIC-2018, and 
ISIC-2019 (Owida et al., 2024; Kim et al., 2023; Daghrir et al., 2020; Owida et al., 2024). 
Subhashini and Chandrasekar proposed the Improved Quantum Query Optimization along with 
USSL-Net, which achieved 94.23% accuracy on the ISIC-2019 dataset.(Alazaidah et al., 2024; 
Subhashini & Chandrasekar, 2023; Ayyalsalman et al., 2024)In clinical applications, the field 
has increasingly recognized the importance of the trade-off between sensitivity and specificity. 
CNN-based traditional approaches, on the other hand, previously exhibited erratic performance 
over these metrics, with certain networks exhibiting low sensitivity but high specificity (Seeja& 
Geetha, 2023; Abdelhafeez et al., 2023;Arabiat et al., 2024)or vice versa. Recent transformer-
based methods have energy-efficient performance at a larger scale with a more balanced 
performance. The hierarchical feature learning process of Swin Transformer V2 and the efficient 
and localized feature extraction of ConvNeXt V2 have both shown highly effective in achieving 
competitive performance on both metrics.We extend this prior work with a new triple stream 
architecture that integrates the best of dermatology-tuned Vision Transformers, Swin 
Transformer V2, and ConvNeXt V2. This method capitalizes on the synergetic powers of these 
architectures: the feature learning on dermatological images specific to Vision Transformers, 
Swin Transformer V2's hierarchical construction capabilities, and the locality-enriched 
representation learning inherent in ConvNeXt V2. Incorporating these advanced architectures 
will allow us to obtain better overall performance, both in terms of sensitivity and specificity, 
whilst still being computationally efficient. 

Methodelogy  

We propose in this section a sophisticated hybrid method for the classification of multiclass 
skin cancer present in dermoscopic images. Our methodology consists of five stages, namely 
lesion segmentation, feature extraction based on transformer-based architectures, feature 
concatenation, feature selection, and classification. Each stage is presented in the following 



Alshdaifat et al. 1095 

posthumanism.co.uk 

 

 

subsections: description of the theoretical background and practical implementation, as shown 
in Figure 1. 

Figure 1: Triple-Stream Transformer Architecture for Skin Cancer Classification 

Lesion Segmentation 

DeepLabV3+ 

Semantic segmentation is a key part of computer vision where every pixel in an image is marked 
with the class of its respective object and region. Our segmentation backbone is based on the 
state-of-the-art DeepLab family, specifically the latest DeepLabV3+ which has replaced CRF 
with a better encoder-decoder architecture. The DeepLabV3+ model consists of an encoder that 
produces rich sematic features from images and a decoder that fuses features from various levels 
to improve segmentation, especially at boundaries. The decoder combines coarse semantic 
information extracted from the encoder and fine-grained detail from previous network stages to 
iteratively refine segmentation predictions. This two-step method is particularly useful in the 
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context of medical imaging development, where accurate boundary delineation can greatly affect 
the diagnostic quality (Al-Momani et al., 2024; Yuan et al., 2022). 

Feature Extraction 

Feature extraction techniques can be broadly classified into two segments: handcrafted 
approaches and deep learning based approaches. Traditional methods were based on manually 
engineered feature extractors, and early deep learning methods employed convolutional neural 
networks, whereas in this work, we have utilized three state-of-the-art transformer architectures 
that have shown to be much better at addressing both local and global image properties. 

Dermatology-adapted Vision Transformer (Derm-ViT) 

Derm-ViT designed to work specifically to Domain video to video transfer to image-based 
tasks; The model works by splitting images into small fixed-size patches of 16×16 pixels. 
Subsequently, each patch is linearized and added to position embedders to remember the spatial 
information. By optimizing some parts of the architecture for dermatology, the attention maps 
learned throughout the training enable the model to highlight differences in skin lesions that are 
subtle and would have been missed without this architecture.The transformer encoder is made 
up of several layers, each of which contains a multi-head self-attention mechanism and a multi-
layer perceptron (MLP) block. However, the self-attention mechanism enables the model to 
dynamically assign importance to different regions of an image, which is especially useful given 
the nuance of features present in different skin conditions. It takes as input image of size 
224×224×3 pixels, and propagates through 12 transformer layers, each with 12 attention heads 
(Alshdaifat et al., 2024; Al-Oraini et al., 2024) 

Swin Transformer V2 

The Swin Transformer V2: Hierarchical vision transformer using shifted windows The 
architecture starts with defining non-overlapping patches which are the basic units of processing. 
Then a hierarchical feature extraction passes to the input through multiple stages from multiple 
scales.Our contribution is the shifted window partitioning scheme in Swin Transformer V2, 
which introduces connections across different window partitions in sequential layers. This 
assumes a method goes to have the power to adjust the model to pay attention to and specialize 
in relevant sides of the picture that are important for the correct classification of the pores and 
skin lesion. This has proven computationally efficient and scalable to high resolutions, making 
it particularly suitable for the detailed dermoscopic fields (Owida et al., 2024; Chen et al., 2024). 

ConvNeXt V2 

ConvNeXt V2 is a hybrid architecture that unifies the strengths of the modern transformer 
designs with the inductive biases of convolutional neural networks. They design this 
architecture to modernize traditional CNN designs by borrowing important aspects from the 
transformer models, yet retaining the efficiency and locality of convolutions.It uses a multi-
stage resolution pipeline to classify the images. There are a number of such blocks in each stage 
that exploit local feature extraction and combine it with global context modeling. Entirely 
connected layers are only used in the final classification head enhancing their convolutional 
nature except for the last few layers. The model can effectively capture both local texture 
patterns and global structural information through this design (Tan & Le, 2019; Huang et al., 
2017; Galdolage et al., 2024). 
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Feature Selection 

Feature Selections as classification is the task at hand, we want to pick our features to maximize 
the performance of our classification. This means keeping the features leading to the most 
informative data and elliminating the redundant or irrelevant information. Specifically, we 
assess the efficacy of three well-known algorithms for feature selection(Abuowaida et al., 
2023), namely ReliefF(Owida et al., 2024;Owida et al., 2023; Alhija et al., 2024), mRMR 
[(Pandimurugan et al., 2024;Al Tawil et al., 2024; Ekanayake et al., 2024) and Fschi2 
(Pandimurugan et al., 2024), within the context of their application to the multi-class skin cancer 
classification problem. 

Classification 

The classification stage is the last step in our pipeline, in which the selected features are then 
used to find out the particular type of skin lesion. Our method performs an extensive assessment 
of several classification methods such as support vector machine (SVM), Naive Bayes (NB), 
linear discriminant analysis (LDA), decision tree (DT), and k-nearest neighbors (kNN) , to find 
the optimal method for our case. 

The Proposed Hybrid Model for Multi-Class Skin Cancer Classification 

This hybrid model we propose combines above components into a complete classification 
pipeline as shown in Figure 2. We first segment dermoscopic images using DeepLabV3+ to 
extract lesion regions while removing confounding factors such as pen markings, air bubbles, 
and hair. The segmentation step here uses a ResNet50 backbone network trained on the ISIC-
2018 dataset this is a dataset of 2594 expertly segmented images.After segmentation, we extract 
features from the isolated lesion images using our triple-stream transformer-based architecture. 
The 224×224×3 input images are independently passed through each of the transformer models 
(Derm-ViT, Swin Transformer V2, and ConvNeXt V2) to yield feature vectors that efficiently 
describe distinct lesion characteristics. Derm-ViT stream focuses on dermatology-specific 
patterns, Swin Transformer V2 captures multi-scale features, and ConvNeXt V2 extracts local 
texture information. 

The feature vectors from each transformer stream (1×1000 dimensions) are concatenated into a 
single comprehensive feature representation (1×3000 dimensions). This joint vector is subject 
to feature selection via the ReliefF algorithm, which was selected based on comprehensive 
experimental validation (see Section 4.5). The selection reduces the feature vector to 1×1000 
dimensions keeping the most discriminative features.The last classification step utilises a kNN 
classifier to classify the lesions into eight classes: melanoma, NV, BCC, AK, BKL, DF, VASC, 
SCC. This classifier was chosen based on comparative performance, the implementation used 
default parameter values for reproducibility purposes. 

Experimental Results 

Dataset 

The Dermoscopic ISIC-2019 dataset was used for this study. It has 25,331 images of the skin 
that are split into eight diagnostic groups: actinic keratosis (AK), basal cell carcinoma (BCC), 
benign keratosis (BKL), dermatofibroma (DF), melanoma (MEL), melanocytic nevus (NV), 
squamous cell carcinoma (SCC), and vascular lesion (VASC). With NV having the largest 
representation (12,875 photos) and DF and VASC having the lowest (239 and 253 images, 
respectively), the way images are distributed throughout these classes is clearly uneven. For 
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multi-class skin cancer classification, this extensive and varied collection offers a realistic yet 
demanding situation. 

Data Augmentation 

To enhance model performance and address the challenges of limited or imbalanced datasets, 
data augmentation techniques were applied. Two primary augmentation methods were 
employed: random rotation and zoom operations. For the rotation technique, each source image 
was rotated clockwise or counterclockwise by a randomly selected angle between -90° and +90° 
degrees, altering the position of the lesion within the frame. Random zoom augmentation was 
also utilized, with images created using zoom values ranging from 1.2 to 2.0. These 
augmentation techniques substantially increased the total number of images from 25,331 to 
74,022, providing the model with more diverse training examples. 

Experimental Setup and Evaluation Metrics 

MATLAB R2023b created segmentation and classification models, then trained on a machine 
running a 12th-generation Intel Core i7-12650H CPU @ 4.7GHz, 8GB GPU, and 32GB RAM. 
Five well-known metrics—accuracy, precision, sensitivity, specificity, and F1-score—were 
used to evaluate model performance, therefore offering a whole image of categorization 
strengths(Qatawneh et al., 2024; Batiha et al., 2024; Abu Owida et al., 2024; Owida et al., 2024). 

Lesion Segmentation Results 

Effective feature extraction and classification rely critically on accurate lesion segmentation. 
DeepLabV3+'s performance under three distinct backbone architectures—ResNet18, ResNet50, 
and MobileNetV2—was compared in this work Segmentation quality was evaluated by dice and 
Jaccard similarity coefficients.  

 

Networks Similarity coefficient  Pixel classification accuracy  

 Dice Jaccard Global Mean 

MobileNetV2 93.54 88.05 92.12 90.33 

ResNet18 93.58 89.30 92.61 91.39 

ResNet50 94.40 89.55 93.35 91.90 

Table 1: Segmentation Results of the Deeplabv3+ Model with Different Backbone Networks 

A Dice coefficient of 94.40%, a Jaccard index of 89.55%, a global accuracy of 93.35%, and a 
mean accuracy of 91.90% the ResNet50-based network shows outstanding performance across 
all assessment measures. 

 ResNet18 gives similar findings with only minor variations; MobileNetV2 performs much 
worse in all measures. ResNet50 offers the best backbone architecture for the skin lesion 
segmentation work, our thorough analysis verifies. Accurately isolating the area of interest and 
eliminating artifacts that could otherwise compromise classification performance depend on 
improved overlap between the projected segmentation masks and ground truth, shown by higher 
Dice and Jaccard coefficients. These findings support our selected ResNet50 backbone for the 
proposed hybrid model's DeepLabV3+ segmentation component. 
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Determination of Key Components in the Proposed Method 

Comparative examination of many feature extractor models, feature selection methods, and 
classification algorithms helped to determine the most efficient components for the hybrid 
model. 

 

CNN Model SVM (%) kNN (%) NB (%) DA (%) DT (%) 

EfficientNetB0 74.12 93.30 42.82 69.58 58.70 

DenseNet201 57.37 91.59 42.03 69.28 58.15 

MobileNetV2 68.67 90.36 39.88 66.54 54.40 

ResNet50 71.91 90.26 41.99 69.51 58.67 

ResNet101 71.40 90.12 44.58 70.06 59.99 

VGG16 66.03 89.94 32.97 66.98 59.88 

Xception 69.99 89.85 40.63 65.77 55.02 

ResNet18 61.34 89.63 40.16 67.43 57.86 

VGG19 54.72 89.10 28.29 63.85 59.44 

InceptionResNetv2 72.01 88.68 38.21 67.13 57.76 

Table 2: Accuracy Rates of Compared CNN Models with Different Classifiers (After Data 
Augmentation). 

Combining the kNN classifier with EfficientNetB0, DenseNet 201, and MobileNet V2 clearly 
shows that these models rank first with accuracy rates of 93.30%, 91.59%, and 90.36%, 
respectively. Their choosing for the suggested hybrid design is justified by this notable 
performance gain over competing options. Moreover, the kNN classifier often beats other 
classification algorithms (SVM, NB, DA, and DT) across almost all CNN architectures, thereby 
stressing its relevance for this particular classification job. These three models' complimentary 
architectural strengths—EfficientNetB0's compound scaling method, DenseNet 201's feature 
reuse via dense connections, and MobileNet V2's efficient depthwise separable convolutions—
help to explain their outstanding performance. When included into the hybrid architecture, these 
models may together provide a more complete and sophisticated picture of skin lesion features. 

 

Algorithm Accuracy Precision Sensitivity Specificity F1-score 

ReliefF 94.42 94.13 92.99 98.96 93.49 

mRMR 83.93 78.80 78.72 97.11 78.68 

Fscchi2 93.34 92.77 91.51 98.76 92.06 

Table 3: Classification Results Using Different Feature Selection Algorithms (After Data 
Augmentation). 

The ReliefF method is the best option for feature selection in the proposed model as it greatly 
beats both mRMR and Fscchi2 across all evaluation criteria. With variations of 10.49% in 
accuracy and 14.81% in F1-score, the significant performance disparity between ReliefF and 
mRMR emphasizes the need of choosing the suitable feature selection technique. ReliefF's better 
success may be ascribed to its capacity to handle multiclass issues and find pertinent 
characteristics discriminating between closely related skin lesion types. Its resilience to 
irrelevant and redundant information also makes it especially appropriate for handling the 
complex and varied feature representations acquired from many CNN models. These findings 
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show that the three chosen CNN models along with the ReliefF feature selection technique 
provide a strong basis for precise skin cancer categorization. 

Results of Skin Cancer Classification 

The performance of the proposed approach was evaluated on the challenging multi-class skin 
cancer classification task using the ISIC-2019 dataset. 

 

Model Class name Precision Sensitivity Specificity F1-score 

MobileNetV2 AK 84.91 84.91 99.47 84.91 

 BCC 81.31 88.84 98.48 84.91 

 BKL 90.31 85.68 98.26 87.94 

 DF 95.69 86.21 99.85 90.70 

 NV 97.60 92.18 91.48 94.82 

 MEL 76.49 90.77 98.27 83.02 

 SCC 90.52 82.95 99.52 86.57 

 VASC 95.87 88.19 99.87 91.87 

 AVG 89.09 87.47 98.15 88.09 

EfficientNetB0 AK 91.72 89.11 99.61 90.39 

 BCC 89.93 92.17 98.86 91.03 

 BKL 93.54 89.33 98.71 91.39 

 DF 96.65 90.18 99.90 93.30 

 NV 98.14 95.02 94.71 96.56 

 MEL 82.24 93.39 98.71 87.46 

 SCC 90.52 86.05 99.62 88.23 

 VASC 99.54 96.02 99.96 97.75 

 AVG 92.79 91.41 98.76 92.01 

DenseNet201 AK 89.19 81.86 99.31 85.37 

 BCC 83.50 90.82 98.74 87.01 

 BKL 93.06 86.78 98.37 89.81 

 DF 94.26 91.20 99.91 92.71 

 NV 97.79 93.60 93.12 95.65 

 MEL 79.34 91.78 98.42 85.11 

 SCC 89.98 85.84 99.62 87.86 

 VASC 99.54 96.02 99.96 97.75 

 AVG 90.83 89.74 98.43 90.16 

Proposed approach AK 93.72 87.64 99.54 90.58 

 BCC 92.08 93.51 99.05 92.79 

 BKL 94.85 91.31 98.96 93.05 

 DF 97.13 91.44 99.91 94.20 

 NV 98.42 95.73 95.48 97.05 

 MEL 84.72 95.00 99.01 89.56 

 SCC 92.13 91.15 99.77 91.64 

 VASC 100.00 98.20 99.98 99.09 

 AVG 94.13 93.00 98.96 93.50 

Table 4 Performance Comparison of the Proposed Approach With Individual CNN Models. 
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With average accuracy of 94.13%, sensitivity of 93.00%, specificity of 98.96%, and F1-score of 
93.50%, the proposed hybrid model shows better general performance than separate CNN 
models across all assessment measures. Over the best individual model (EfficientNetB), this 
marks gains of 1.34%, 1.59%, 0.20%, and 1.49% correspondingly. The class-specific research  
With 100% accuracy, 98.20% sensitivity, and 99.98% specificity, the model performs 
remarkably for the class of vascular lesions (VASC), producing an F1-score of 99.09%. The 
unique visual traits of vascular lesions that enable them to be more easily different from other 
skin disorders help to explain this remarkable performance. The suggested method achieves 
84.72% accuracy, 95.00% sensitivity, and 99.01% specificity for the demanding melanoma 
(MEL) class critical for early cancer identification. Melanoma especially depends on the great 
sensitivity as it reduces false negatives and guarantees proper identification of possibly fatal 
tumors.  
Achieving F1-scores of 94.20% and 91.64% respectively, the model also performs well on 
classes with few training data like squamous cell carcinoma (SCC) and dermatofibroma (DF). 
This proves the capacity of the model to learn efficient representations even in cases of class 
imbalance, as shown in Figure 2. 

 

Figure 2: CNN Models Performance with kNN Classifier 

Conclusion 

This work developed a new hybrid method using dermoscopic pictures for multi-class skin 
cancer categorization. The suggested model combines MobileNetV2, EfficientNetB0, and 
DenseNet 201 with DeepLabV3+ for lesion segmentation in a framework for hybrid feature 
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extraction. Feature selection made use of the ReliefF method; final classification made use of 
the kNN algorithm. 

The proposed hybrid model clearly beats individual CNN models and current state-of-the-art 
techniques, as shown by its 94.42% accuracy on the difficult ISIC-2019 dataset. The study 
showed how important lesion segmentation is for improving classification performance and how 
useful it is to combine complementary CNN architectures to get a lot of different traits. 
For dermatologists, the suggested method presents a useful tool that will help them classify skin 
lesions from dermoscopic pictures more precisely and consistently. The development of 
ensemble learning models capable of enhancing classification performance and enabling more 
general clinical use would be the main emphasis of the next studies. 
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