

 2025
Volume: 5, No: 2, pp. 1377–1402

ISSN: 2634-3576 (Print) | ISSN 2634-3584 (Online)

posthumanism.co.uk

DOI: https://doi.org/10.63332/joph.v5i2.512

Perform Scanning and Comparison of Open Source Web Application

Testing Tools: Using Strategic Holistic Approach

Tliahun Ejigu Belay1, Dr. Shalu Gupta2, Eshetu Burisa3,

Abstract

This study investigates the scanning and comparative analysis of open source web application testing tools using a strategic and
holistic approach. As web applications play a crucial role in business operations and customer engagement, the demand for strong
security measures is more important than ever. Open source tools provide flexible and cost-effective options for identifying
vulnerabilities and ensuring adherence to security standards. However, the wide range of available tools requires a systematic
evaluation to assess their effectiveness and appropriateness. Our research utilizes a comprehensive methodology that combines
various scanning techniques and tools, allowing for an in-depth evaluation of their capabilities. By conducting direct comparisons,
we can pinpoint essential performance metrics, usability aspects, and the tools' effectiveness in detecting vulnerabilities across
different scenarios. This holistic approach helps organizations monitor changes in their security posture over time and make
informed choices regarding tool selection and vulnerability management. Ultimately, this study aims to offer practical insights for
developers and security teams, encouraging a culture of continuous improvement and proactive risk management. By harnessing
the advantages of open source tools within a strategic framework, organizations can strengthen their security measures and better
safeguard their web applications in an increasingly complex digital environment.

Keywords: Fintech, Green Finance, ASEAN, Moderator, Mediator.

Introduction

In the context of open source web application testing tools, comparison entails a systematic
evaluation and analysis of results obtained from different scanning sessions or testing tools. This
process is vital for assessing the effectiveness of security measures, tracking changes over time,
and making informed decisions about vulnerability management and the selection of tools

In today's digital environment, web applications are vital for business operations, user
engagement, and data management. The growth of e-commerce, online services, and cloud
computing has made these applications central to how organizations interact with customers and
handle internal processes. However, as these applications become more complex, security
vulnerabilities are increasingly concerning. The integration of various third-party services and
APIs can pose additional security risks if not managed properly.

Open source tools offer a cost-effective and accessible solution for developers and security
experts. Unlike proprietary software, which can be costly and restrictive in terms of
customization, open source tools provide the flexibility to meet specific organizational needs.
They allow for comprehensive vulnerability scanning, ensure compliance with security

1 Research Scholar, Dept. of Computer Applications, Guru Kashi University, Talwandi Sabo, Punjab, India.
2 Assistant Professor, Dept. of Computer Applications, Guru Kashi University, Talwandi Sabo, Punjab, India.
3 Research Scholar, dept. of cyber security Addis Ababa institute of technology (AAiT), Addis Ababa, Ethiopia.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/

1378 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

standards, and promote continuous improvement through iterative testing. This strategy not only
bolsters security but also fosters a culture of accountability and transparency within development
teams, Open source web application vulnerability analysis refers to the systematic review of web
applications to uncover potential vulnerabilities, misconfigurations, and security weaknesses.

Comparison is also crucial. It enables organizations to track changes over time, evaluate the
effectiveness of their security measures, and assess different tools or application versions. By
comparing outcomes from various scans or testing tools, teams can uncover trends, identify
recurring problems, and measure advancements in their security posture. This iterative approach
is key to ongoing security improvement and effective risk management.

Materials and Methods

The materials and methods for conducting scanning and comparison with open source web
application testing tools encompass the selection of suitable tools, the establishment of testing
scope, and the implementation of a structured scanning process. Essential tools like OWASP
ZAP and Burp Suite aid in identifying vulnerabilities, while a properly configured test
environment guarantees effective performance. This methodology involves collecting data,
performing comparison analysis, and generating reports,

The materials employed in the scanning and comparison process consist of a range of open
source web application testing tools crucial for identifying security vulnerabilities. A key tool in
this selection open source web application tools and its effectiveness in detecting vulnerabilities
within web applications. The primary objective of this research was to identify an efficient and
effective tool for web application penetration testing that meets current industry requirements
accurately and efficiently.

Selecting a perfect tool for testing of a software could be a tasking sometimes considering the
factors to put into consideration before choosing a tool. The decision to choose a test tool is a
basic factor in the achievement of test automation. This requires studying the extent of testing
and test methodology, then afterward selecting the correct test tool that meets the necessities of
automating test-suite for a specific item and release [18]. A testing tool can serve for web
application testing, desktop application, mobile application testing or combination of two
applications also it may involve any testing functionality like unit test, regression test, integration
testing etc. The tools evaluated below were selected based on an inclusion and exclusion criteria
of the most discussed testing tools from literature which can also be considered as the widely
used tools by industry practitioners. These tools are briefly introduced and a tabular comparison
of their strength and weakness highlighted based on certain factors like reusability, reliability
and cost etc, these factors were identified from literature and used as a base for comparison (F.

Okezie1, 2019).

The Environment Setup

Setting up an effective environment for web application vulnerability testing requires careful
attention to hardware and software requirements. For hardware, a computer or server with at
least a quad-core CPU, 8GB of RAM (16GB ideal), and 100GB of free disk space is essential
for optimal performance.

On the software side, Kali Linux is highly recommended due to its suite of pre-installed security
tools, though Windows may be necessary for certain applications. Using virtualization software
like VMware Workstation or Virtual Box can facilitate the creation of isolated testing

Belay et al. 1379

posthumanism.co.uk

environments, Key tools include Burp Suite for intercepting web traffic, OWASP ZAP for
automated vulnerability scanning, Nikto for identifying web server issues and sqlmap for SQL
injection testing, by thoughtfully selecting these components, The setup involved two identical
machines. One machine serves as the client with performance testing tools installed and a server
which hosts the static web pages. These machines are connected via PC-to-PC LAN cable or
commonly referred as cross cable connection. The reason for this kind of environment setup is
to minimize the network factors from influencing the results of performance test (Muhammad

Dhiauddin Mohamed Suffian, 2012). The setup is represented in Figure 1 below:

Some concept of Environment Setup

 Test Requirements – Desktop application testing requires the use of at least one
computer system or workstation, whereas in the case of client server application

testing, it requires the use of at least one server for loading the application and one client
machine or system and for web application testing, it requires the use of a web browser
and internet connectivity on personal computers or laptops.

 Test Execution – Desktop application testing can be carried out on a single computer
or workstation, but client server application testing should be done on a 2-tier application
and web application testing should be done on a 3-tier application.

 Test Environments – The environment for stand-alone or desktop application

testing is a user computer because these tests are platform-dependent; in contrast, the
environments for client server application testing and web-based application testing are
often the intranet and web browsers, respectively.

 Test Parameters – When testing desktop or standalone applications, test engineers
examine the factors such as performance, GUI, and memory leaks in the backend
database. In contrast, when testing client server applications, they examine the factors
such as functionality, performance, and GUI. Finally, when testing web applications,

1380 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

they examine the factors such as browser and OS compatibility, GUI testing, broken link
testing, load, and stability.

Evaluation Approach / Implementation

The implementation phase consists of several essential steps to thoroughly evaluate open-source
web application vulnerability testing tools. Initially, the tools are deployed in a standardized
environment, ensuring consistency and control during testing. This standardization helps reduce
external factors that could affect the results.

Next, tests are executed by applying the chosen tools to various web applications with known
vulnerabilities. This practical assessment is vital for determining each tool's effectiveness in
detecting and reporting security issues, allowing for real-world performance evaluation.

After testing, systematic documentation of the findings is crucial. This record-keeping should
include information on detected vulnerabilities, scan durations, and any anomalies encountered.
Such detailed documentation supports a structured comparative analysis later in the process.

The comparative analysis will focus on several key aspects of each tool. It will involve an in-
depth examination of their strengths and weaknesses, providing insights into their capabilities
and limitations. This evaluation aids users in understanding the practical considerations of
selecting a particular tool.

User experience will also be assessed by analyzing the interface and ease of navigation, as user-
friendly tools can greatly enhance assessment efficiency. Finally, the level of community support
and engagement will be reviewed, as a strong community can offer valuable insights, updates,
and troubleshooting help. This thorough analysis will ultimately assist users in choosing the most
appropriate tools for their specific requirements.

The effectiveness of all web vulnerability scanners should be evaluated using a set of
“benchmark” web applications and all OWASP Top 10 types of vulnerabilities.

In this section we will discuss the artefact implementation. We have taken two approached to
evaluate the scanning, crawling and vulnerability detection capabilities of the tool. We have
utilized OWASP Benchmark test tool to evaluate the vulnerability detection and crawling
coverage of the tool.

To conduct analysis web applicant testing the testing process for web application scanners
involves several systematic steps approach to ensure a comprehensive understanding of each
tool's capabilities and effectiveness of testing. Below are the key phases of this evaluation
process:

My evaluation approach involved the following steps

A. Download the OWASP Benchmark Project: We set up the project using Docker.

B. DNS Registration: We registered a domain with Go Daddy to make the OWASP
Benchmark Project publicly accessible.

C. Port Forwarding: We configured port forwarding on our home router to facilitate access.

D. Tool Acquisition: We downloaded the top twenty security tools, each requiring specific
environment setups, as detailed in Table 3.

E. Configuration Settings: We configured each tool based on the selected pre-scan type.

Belay et al. 1381

posthumanism.co.uk

F. Execution of Tests: We initiated attacks on the OWASP Benchmark Project using the
configured tools.

G. Result Generation: The results were generated in XML format.

H. Result Integration: We integrated the results into the OWASP Benchmark Project.

I. Score Calculation: We ran the score calculator provided by the OWASP Benchmark
Project against the XML reports generated by the tools.

J. Manual Benchmarking: We analyzed the score results and began our manual
benchmarking using our proposed framework.

K. Comparison of Tools: Finally, we compared the tools based on the overall benchmarking
results.

It is implementation process

Implement Experimental Scenario

In this section, we outline our implementation approaches for the experiment. We adopted two
primary test implementation strategies. First, we established the testing environment, ensuring
it was properly configured. Next, we set up the scan configurations and initiated benchmarking
using the OWASP Benchmark tool to assess the scanners' crawling capabilities and vulnerability
detection coverage. Following the benchmarking process, we analyzed the results and conducted
a comparative evaluation based on our proposed assessment method.

Implementing an experimental scenario to compare penetration testing tools for detecting web
application vulnerabilities involves several key steps. First, clearly define the objectives, such
as evaluating accuracy, speed, and ease of use. Next, select a mix of popular open-source tools
like OWASP ZAP and Burp Suite. Set up a controlled testing environment using vulnerable
applications, and identify the specific types of vulnerabilities to assess, such as SQL Injection
and XSS. Establish a standardized methodology for preparation, execution, and data collection,
focusing on metrics like the number of vulnerabilities detected, programing logic for rank
calculation and user experience. After conducting the tests, compile the results into a

1382 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

comparative format to analyze tool performance and provide recommendations tailored to
different use cases for community, the experiment aimed to evaluate the effectiveness of web
application security tools by conducting tests against within OWASP Benchmark Project this
OWASP Benchmark Project as a standardized framework, the experiment provided a rigorous
comparison of how well each tool performed in real-world scenarios, offering insights into their
strengths and weaknesses in identifying critical security flaws (Thota, June 2024).

Design of a Framework for Evaluation Criteria

This subsection outlines a detailed comparative benchmark framework for assessing the twenty
selected penetration testing tools. We defined specific metrics to evaluate the tools
comprehensively. After examining existing web application scanner evaluation frameworks, we
developed a new framework that aligns with their methodologies while offering a more extensive
set of benchmarking metrics and criteria, thereby enhancing the evaluation process for
professionals in the web penetration testing domain.

Our framework includes the following criteria: test coverage, attack coverage, vulnerability
detection, and efficiency. During our review of various existing frameworks, such as the
OWASP Benchmarking Project, Web Input Vector Extractor Teaser (WAVSEP), and the Web
Input Vector Extractor Teaser (WIVET), we noted that many tend to concentrate on specific
aspects of automated scanners and provide limited metrics for assessing performance.

To address this limitation, we created a framework that incorporates a broader range of
evaluation parameters. Additionally, we employed a scoring system previously established in
the literature to facilitate a comparative analysis of each tool. Each key parameter is associated
with a specific scoring system as follows (Marwan Albahar 1, Published: 21 September

2022):

A. Scanner Scoring System: The selected criteria will be kept in mind while benchmarking
the top web application vulnerability testing tools. We use the proposed score system in to
evaluate the tools.

B. Criteria and Metric Selection: The used benchmarking metrics and criteria for tool
evaluation are presented as follows: – Graphic user interface (GUI); – Command-line
interface (CLI).

C. Penetration Testing Level: Recent scanning tools can grasp web application sessions and
detect variations in web application source code. Most automated web application testing
tools only use the black box test method in authenticated scans

D. Crawling Types: There are two types of crawling: passive crawl and active crawl. The
active crawl is the first step before the active scanning, which catalogs the found links.
However, the passive crawl is best for covering. Score for crawling ability.

E. Number of URLs Covered: Web application crawling is a part of the information gathering
stage in the PEN-testing process. In this stage, a penetration tester would like to gather as
much information as possible about the web application. Crawler coverage can be signified
by the number of URLs crawled by the scanner; the more URLs the scanner covers, the
higher the score as follows. Score for covered URLs:

F. Scanning Time: The automated tools developed by penetration testers cover a greater area
in a large web application with less possible time. Therefore, the time taken is important for

Belay et al. 1383

posthumanism.co.uk

scanner evolution. Score for scanning time:

G. Types of Scan: There are two types of scans in web application PEN-testing, passive and
active. In this metric, the scanner with active and passive options takes the highest point.
Score for scan type:

H. Reporting Features: The reports can be formatted depending on the compliance policy that
the penetration tester needs to analyze, which is a recent feature in scanners

I. Added Features: Some automated tools have add-ons and extension features that improve
the scanner performance in vulnerability detection. Most penetration testers take advantage
from these features

J. OWASP Top 10 Vulnerabilities Coverage: The OWASP Top 10 Vulnerabilities are
essential for evaluating many organizations and penetration testers use penetrating tools to
cover the top 10 vulnerabilities in their web applications and protect their assets from the
known vulnerabilities

K. Number of False Positives: The false positive is an unreal indicator for vulnerabilities in
the OWASP benchmark reported by the scanner. Fewer false positive percentages are
helpful for penetration

L. Number of True Positives: The true positive means that the real vulnerability number in
the OWASP benchmark is detected correctly by the scanner. It is the most important metric
in vulnerability detection criteria.

Measurement Criteria Metric Score Range

Test coverage Percentage of code

tested

% of code coverage 0% - 100%

Attack

coverage

Types of attacks tested Number of attack vectors 0 - N (where N is

total)

Efficiency Time taken for testing Time (minutes/hours) Low, Medium,

High

Vulnerability

detection

False

positives/negatives

Count of false

positives/negatives

0 - N

(where N

is total)

Assessment Metrics for web application security testing

This table presents essential metrics for assessing web application security testing. Each criterion
sheds light on different facets of the testing process:

 Test Coverage: This metric indicates the percentage of the application's code that has
undergone testing. A higher percentage signifies a more comprehensive evaluation. The
scoring range goes from 0% (indicating no code tested) to 100% (meaning the entire
codebase has been tested).

 Attack Coverage: This criterion evaluates the range of attack vectors that have been applied
to the application. The score reflects the number of unique attack types tested, ranging from
0 to N, where N denotes the total number of applicable attack vectors.

 Efficiency: This metric assesses the time taken to complete the testing process. Efficiency
is classified into three categories: Low, Medium, and High, which indicate the speed of

1384 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

testing relative to the application's complexity.

 Vulnerability Detection: This measures how effectively the testing identifies
vulnerabilities, focusing on the number of false positives and negatives. A lower count
suggests a more dependable testing process. The scoring range is from 0 to N, with N
representing the total number of potentially detectable vulnerabilities.

 Criteria refer to the particular elements being assessed to evaluate the effectiveness of the
testing process. Each criterion is linked to a metric, which provides a measurable way to
gain insights into the performance of the application being tested. For example,

 "Test Coverage" assesses the percentage of the application’s code that has been examined,
while "Attack Coverage" looks at the range of attack vectors utilized during testing. The
score range specifies the potential values that the metric can achieve, facilitating a consistent
evaluation. For instance, the score range for "Test Coverage" runs from 0% to 100%,
indicating how much of the code has been tested, while "Attack Coverage" is represented as
a count from 0 to N, where N signifies the total number of relevant attack types. This
organized framework allows organizations to effectively evaluate and compare their web
application security efforts.

 Metrics are measures of quantitative assessment commonly used for assessing, comparing,
and tracking performance or production ,Measurement or criterion utilized within a
specialized field or particular framework, although it isn't commonly recognized
terminology in web development or application performance metrics.

In summary, these metrics create a robust framework for evaluating the thoroughness and
effectiveness of web application security testing. They assist organizations in pinpointing areas
for improvement and ensuring strong security protocols are in place.

Benchmark web application testing tools analysis techniques

Analyzing web application testing tools requires a comprehensive approach that considers
various factors, including functionality, performance, user satisfaction, and cost. Employing a
combination of different techniques we have been conducted a thorough study to identify and
evaluate the most commonly used open source web vulnerability scanner. The evaluation was
based on predefined criteria provided by the Web Application Security Consortium. The
benchmarking criteria for evaluating tools are based on several parameters, including the tool's
strength, its drawbacks, and the corresponding tool mentioned under the strength category or
performance. The evaluation of these tools reveals that each tool has its own advantages and
disadvantages, positive and negative aspects. However, the strength of a tool is reflected in its
usage, which supports various testing strategies such as functional testing, regression testing,
automation testing, compliance testing, security testing, and more. Additionally, we conducted
a comprehensive analysis of the results generated by the different scanners following the
detection stage. Subsequently, we compared and analyzed the performance of the scanners using
the OWASP benchmark metric in order to assess their precision the primary requirement for a
tool that caters to the needs of the testing team is its ability to support web services while keeping
the cost to a minimum. This is the current demand in the industry, we also compared the scanners
based on our framework and calculate test score for each of the scanner and rank them. This
chapter addresses second and third objective of our research (Mandar Prashant Shah,

08/01/2020)

Belay et al. 1385

posthumanism.co.uk

Selecting of top (20) tools

Open source web vulnerability scanners. The main objectives of this study are to assess the
performance of open source scanners from multiple perspectives and to examine their detection
capability. This paper presents the results of a comparative evaluation of the security features as
well as the performance of four web vulnerability detection tools. We followed this comparative
testing with a case study in which we evaluate the level of agreement between the results reported
by twenty (20) open source web vulnerability scanners ,we conclude that the inconsistencies
between the reports generated by different scanners might not necessarily correlate with their
performance properties. We also present some recommendations for helping developers of web
vulnerabilities scanners to improve their tools’ capabilities, however we are selected tools to
compare in this section, use open-source web application testing tools Performing a
comprehensive comparison of open-source web application testing tools using a strategic,
holistic approach involves evaluating various tools based on several criteria and, first and
foremost, the best tools selection for the sample (Mansour Alsaleh, 2017).

In dynamic realm of cybersecurity, open source web application testing tools play a crucial role
in identifying vulnerabilities and strengthening defenses. My research focused on systematically
selecting the top 20 n tools preferred by seasoned penetration testers, ensuring both academic
rigor and practical applicability. I began with an extensive literature review of recent academic
studies, which helped us create an initial list of frequently cited tools. To further validate this
list, we conducted a survey of cybersecurity experts to gather insights on tool preferences,
usability, and emerging trends. This survey allowed participants to rate their favorite tools and
share feedback, enhancing our understanding of their practical use. I established selection
criteria based on factors such as popularity, functionality, recent updates, and user experience.
After analyzing data from the literature review and expert survey, I refined my list to 20 tools
that had strong reputations and met our criteria. Furthermore, we ensured that my evaluations
were based on the latest versions of these tools, confirming access to the most recent releases
during study this research of work, this comprehensive approach resulted in a well-rounded
selection of tools that are pertinent to the current cybersecurity Ecosystem.

Web application security tools: feature and requirement

Presents the comparison of the tools based on their technical requirements: These tools vary
from each other based on the technology they are developed in, the operating system in which
they are supported and their requirements which need to be fulfilled before installation.

No Tools

Name

Requirement OS Support Programming

Language

Version

Used

1 Burp Suite Java Runtime

Environment

Windows,

Linux, macOS

Java 2023.x

2 OWASP

Zap

Java Runtime

Environment

Windows,

Linux, macOS

Java 2.12.x

3 Acunetix .NET Framework,

Web Server

Windows C# 14.x

4 Nikto Perl Windows,

Linux, macOS

Perl 2.1.6

5 UniScan Web Server Windows,

Linux

PHP 7.x

6 w3af Python, Web Server Windows, Python 1.6.49

1386 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

Linux

7 Vega Java Runtime

Environment

Windows,

Linux, macOS

Java 1.0.1

8 SQLMap Python, Database

Drivers

Windows,

Linux

Python 1.6.6

9 Arachni Ruby Windows,

Linux

Ruby 1.5.0

10 Wapiti Python, Web Server Windows,

Linux

Python 3.0.0

11 Wscan Python, Web Server Windows,

Linux

Python 1.0.0

12 Webshell Web Server Any N/A N/A

13 Skipfish C Compiler, Web

Server

Windows,

Linux

C 2.13b

14 Dirb Web Server Windows,

Linux

C 2.22

16 Grinder Java Runtime

Environment

Windows,

Linux, macOS

Java 3.11.0

Description of Web application security tools: feature and requirement

The table showcases a variety of web application security tools, each designed to meet different
user requirements and operating conditions. Here are the main points of comparison:

 Operating System Support: Most tools are compatible with multiple operating systems,
especially Windows and Linux. However, tools like Acunetix are restricted to Windows,
which may limit their use for those on other systems.

 Programming Language: The tools are developed using several programming languages,
predominantly Java, Python, and C. Java-based tools (such as Burp Suite, OWASP Zap, and
Vega) offer cross-platform functionality, while Python tools (like w3af, SQLMap, and
Wapiti) provide greater flexibility and user-friendliness.

 Requirements: The tools have varying requirements, with some needing specific
frameworks (e.g., .NET for Acunetix) or compilers (e.g., Skipfish). These dependencies can
impact installation and operation based on the user’s environment.

 Versioning: There is a wide range of versioning among the tools, from the most recent
releases (like Burp Suite 2023.x) to older versions (such as Nikto 2.1.6). It is advisable for
users to opt for the latest versions to take advantage of enhanced features and security
updates.

 Specialization: Some tools, including Webshell and UniScan, are tailored for particular
functionalities, such as addressing web server vulnerabilities, while others offer more
comprehensive scanning capabilities. This specialization enables users to select tools that
align best with their assessment goals.

 Ease of Use: Tools like OWASP Zap and w3af are recognized for their intuitive interfaces,
making them suitable for beginners, whereas others may demand a higher level of technical
skill.

Belay et al. 1387

posthumanism.co.uk

Design Evaluation Criteria and formula

This subsection presents a detailed framework aimed at evaluating the top twenty penetration
testing tools, highlighting specific metrics for assessing these tools from multiple angles. In
creating this framework, we drew on existing evaluation methods for web application scanners,
refining and expanding them to offer a wider array of benchmarking metrics and criteria for
professionals in the web penetration testing domain. Our framework takes a comprehensive
approach by incorporating several essential criteria: Test Coverage Criteria examines how well
each tool can evaluate various components of a web application, ensuring thorough testing;
Attack Coverage Criteria evaluates the spectrum of attack types each tool can simulate, offering
insights into their effectiveness against different vulnerabilities; Vulnerability Detection Criteria
assesses the accuracy and efficiency with which each tool identifies vulnerabilities, which is
vital for effective risk management; and Efficiency Criteria reviews the performance of each
tool concerning speed and resource use during testing, ensuring optimal functionality within
time limits.

A. OWASP Top 10 Vulnerabilities Coverage Metric This metric assesses how well web
applications address the OWASP Top 10 vulnerabilities, which is essential for
organizations and penetration testers to evaluate their security practices. Scoring

Criteria:

 Less than 25% coverage

 25% to 50% coverage

 50% to 70% coverage

 70% to 90% coverage

 More than 90% coverage

B. Automation Level Metric This metric evaluates how effectively a scanner can conduct
scans independently, reducing the necessity for manual input from penetration testers.
The scoring criteria for automation level are:

 Requires 100% involvement from testers

 Requires 80% involvement from testers

 Requires 70% involvement from testers

 Requires 50% involvement from testers

 5: Requires less than 30% involvement from testers

1388 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

C. False Positive Rate (FPR) Formula

Based on the calculated False Positive Rate (FPR), scores can be assigned as follows:

 Score 1: FPR > 50%

 Score 2: FPR > 30%

 Score 3: FPR < 30%

Interpretation Higher scores reflect improved performance in reducing false positives, which
is beneficial for penetration testing. In contrast, lower scores indicate a higher number of false
positives, making vulnerability assessments more challenging.

D. Number of True Positives:

The True Positive Rate (TPR), commonly referred to as sensitivity or recall, can be calculated
with the following formula:

Where:

Belay et al. 1389

posthumanism.co.uk

 TP = True Positives (the count of vulnerabilities accurately identified)

 FN = False Negatives (the count of vulnerabilities that were overlooked)

Evaluating Vulnerability Scanner Performance with TPR:

 A higher TPR reflects improved performance, indicating the scanner is
effectively detecting vulnerabilities.

 A TPR of 1 (or 100%) means all actual vulnerabilities were found,
while a TPR of 0 indicates none were detected.

E. Scanner Scoring System

Criteria Selection Establish and specify the essential criteria for assessment. Typical criteria
consist of:

 Accuracy (maximum of 5 points)

 Speed (maximum of 5 points)

 User-Friendliness (maximum of 5 points)

 Reporting Features (maximum of 5 points)

 Compatibility with Other Tools (maximum of 5 points)

 Cost Efficiency (maximum of 5 points)

F. Criteria and Metrics Selection

Scoring Criteria: Based on Experience (UX)

 GUI: User-friendly design, straightforward navigation, and visual cues.

 CLI: Clear commands, simplicity in recalling commands, and availability of help
resources.

 URL Coverage Scoring System

 In the context of web application crawling for penetration testing, the scoring
for URL coverage is categorized as follows:

 Score 1: Coverage is less than 25%

 Score 2: Coverage ranges from 25% to 50%

 Score 3: Coverage is between 50% and 70%

1390 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

 Score 4: Coverage falls between 70% and 90%

 Score 5: Coverage exceeds 90%

 Scanning Time Scoring Criteria

 Score 1: Exceeds 6 hours

 Score 2: Exceeds 3 hours

 Score 3: Exceeds 2 hours

 Score 4: Exceeds 45 minutes

 Score 5: Under 30 minutes

This scoring framework enables the assessment of various scanning tools' efficiency based on
the time required to analyze a large web application. If you need help with incorporating this
into a report or analysis, feel free to ask!

 Scan Type Scoring Criteria

 Score 1: Only has an active scan or a passive scan.

 Score 2: Includes both active and passive scans.

 Score 3: Features active, passive, or policy scans.

This scoring framework assesses web application penetration testing tools based on the variety
of scanning methods they provide, with a focus on those that offer both active and passive scans.

 Reporting Features

Scanners can customize their reporting capabilities to align with the compliance policies that
penetration testers must assess. Recent developments have enabled reports to conform to
standards like OWASP Top 10 and HIPAA. Typical report formats include HTML, PDF, and
XML. Compliance policy reports tend to be more concise, facilitating easier analysis for
penetration testers.

Scoring for Reporting Features:

 Score 0: Provides reports in HTML, PDF, and XML formats.

 Score 1: Includes compliance reports based on standards such as OWASP Top 10 and
HIPAA.

G. Youden Index formula Youden’s Index is a metric used to assess the effectiveness of
diagnostic tests, especially in the realm of web application penetration testing (PEN-
testing) scanners. It is defined as follows, Youden Index Values:

 1: The scanner successfully identifies vulnerabilities with no false positives.

 -1: The scanner only reports false positives, failing to identify any true vulnerabilities.

 0: The scanner’s findings align with the expected results, showing no discrepancies.

Belay et al. 1391

posthumanism.co.uk

Youden Index Formula:

Where:

 TP: True Positives

 TN: True Negatives

 FP: False Positives

Scoring System for Youden’s Index:

 Only false positives detected, no true positives (value of -1).

 Results align with expectations (value of 0).

 Vulnerabilities detected correctly (value of 1).

Evaluation criteria parameter (table)

1392 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

Framework summary for evaluation criteria open source comparison scoring system

In the context of an Evaluation Criteria and Scoring System, research refers to a structured
inquiry focused on developing, refining, and validating the criteria and scoring methods used to
evaluate projects, proposals, or performances. This process includes gathering data on different
evaluation techniques, analyzing their effectiveness, and understanding the needs of
stakeholders. By utilizing both qualitative and quantitative research methods, researchers can
pinpoint best practices, ensure alignment with organizational objectives, and improve the
reliability and validity of evaluation results. Ultimately, this research supports the creation of a
comprehensive framework that promotes objective assessments and enhances transparency and
accountability in decision-making processes. The following table is the summary of evaluation
criteria indicator.

No criteria Metric Description Score

Range

1 Test

Coverage

Penetration

Testing

Effectiveness

Evaluates the overall effectiveness of the

penetration testing conducted.

1–3

Unique URLs

Tested

Measures the number of distinct URLs

assessed during the evaluation.

1–5

Diversity of

Test

Assesses the variety and identify

vulnerabilities.

1–5

2 Efficiency Scanning

Duration

Time required to complete the scanning

process; shorter durations indicate higher

efficiency.

1–5

OWASP Top

10 Coverage

Measures the extent to which the OWASP

Top 10 vulnerabilities were tested; more

coverage indicates

1–5

False Positive

Count

Counts the number of false positives

reported; fewer indicate better accuracy.

1–3

3 Vulnerability

Detection

True

Positives

Count

Total of actual vulnerabilities detected;

higher counts suggest better detection

capability.

1–4

Youden

Index

A statistical measure assessing the

effectiveness of the test, balancing

sensitivity and specificity.

1–3

Level of

Automation

Evaluates how automated the testing

process is; more automation suggests

greater efficiency.

1–5

Types of

Crawling

Assesses the variety of crawling methods

used (e.g., web, API).

1–2

Belay et al. 1393

posthumanism.co.uk

Additional

Features

Counts any extra functionalities that

improve the tool's usability or

effectiveness.

0–1

Reporting

Quality

Evaluates and quality of reports generated

after testing.

0–1

4 Configuration Ease of

Configuration

Measures how straightforward it is to set up

the tool; simpler configurations score

higher.

1–3

5 Other

Aspects

Scan Logging

Availability

Indicates if logging options for scans are

available, aiding in tracking and analysis.

0–1

tool Cost T not scored but important for comparison. NA

Tool Type Classification of the tool (e.g., commercial,

open-source); not scored but relevant

context.

NA

 Available

Scan Types

Evaluates the different types of scans

offered (e.g., full, incremental); more

options suggest greater flexibility.

1–3

Pause and

Resume

Functionality

Ability to pause and resume scans,

improving usability during lengthy

assessments.

0–2

Implement experimental scenario

Implement an experimental scenario for web application testing requires a systematic approach
to assess the application's performance, usability, and functionality across different conditions.
Below is a step-by-step guide for developing such a scenario:

1394 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

Experiment dash board

Comparison Rank

Conclusion and Organization of Examination Results

This section outlines the final assessment of the analysis results for open-source vulnerability
scanner tools applied to web applications. The vulnerability identification process includes
documenting the vulnerabilities found, evaluating their impact, and determining their severity.
Additionally, we will analyze the results using a design matrix that focuses on key factors such

Belay et al. 1395

posthumanism.co.uk

as features, testing performance, accuracy, community support, ease of use, and testing scope.
This thorough examination is crucial for the comparative analysis of the research findings,
enabling systematic comparisons based on these criteria.

The primary goal of this study is to conduct a detailed evaluation of open-source web application
security testing tools. The research seeks to identify the most effective strategies for detecting
vulnerabilities in web applications. The findings from this study will provide developers with
essential insights for choosing the right web application testing tools. Ultimately, this research
aims to improve the security of web applications, benefiting society as a whole. Following the
research experiments, I will organize and present the examination results in a structured testing
criteria format.

N

o

Tools Perform

ance

Accur

acy

and

Reliabi

lity

Ea

sy

us

e

Commu

nity

support

Automa

tion and

Scalabil

ity

Comprehe

nsive

Coverage

Integrati

on and

Extensib

ility

1 Burp

Suite
      

2 OWAS

P Zap
      

3 Metasp

loit
      

4 maltego       

5 W3af       

6 Nessus       

7 Acuneti

x
      

8 Arachi       

9 Postma

n
      

1

0

Wscan       

1

1

Skipfis

h
      

1

2

Webshe

ll
      

1

3

Grinder       

1

4

SQLMa

p
      

1

6

Nuclei       

1

7

Uni

Scan
     

1396 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

1

8

Wapiti       

1

9

Nikto       

2

0

Dirb       

Comparison description test of web application security tools base on metrics

From the above comparison table I have been determine using two symbols write () and x

() to categorized tools by different metrics (√) for positive indicators and (×) for negative
indicators across the specified metrics,

 (√) for positive indicators the tool performs outstanding performance, functioning swiftly
and efficiently under diverse conditions. It guarantees high accuracy and reliability,
consistently producing precise outcomes with few false positives and negatives. Its intuitive
user interface makes it easy to use for individuals of all skill levels. Furthermore, a lively
community offers a wealth of resources and active forums that improve user support.
Designed for automation and scalability, the tool can manage larger projects and intricate
tasks without compromising performance. It effectively addresses a broad spectrum of
vulnerabilities and attack vectors while providing smooth integration with other tools and
platforms for customization and enhanced capabilities.

 (×) for negative indicators the tool's performance is compromised by its slow and
inefficient operation, especially under heavier loads. It also faces challenges with accuracy
and reliability, frequently producing false positives and negatives. Users may struggle with
the complex interface, which is not user-friendly, making effective use difficult. Community
support is lacking, with few resources or active discussions to help users. Additionally, the
tool's automation features and scalability are insufficient for larger projects. It has limited
coverage of vulnerabilities, missing many critical areas, and offers restricted options for
integration with other tools or customization.

Result Analysis

When evaluating open source tools, it is crucial to establish specific criteria and metrics to assess
their effectiveness and suitability for your unique requirements. This organized approach aids in
identifying the most appropriate tool and ensures that your decisions are based on objective data.
Key criteria include functionality, where you examine the available features and user-
friendliness; community and support, which entails analyzing the size and engagement level of
the user community as well as the quality of provided documentation. Performance metrics, like
speed and resource consumption, are vital for understanding how the tool performs under
different conditions.

Compatibility is another essential aspect, focusing on how well the tool integrates with other
systems and its compatibility across various platforms. Security factors, such as vulnerability
management and data protection capabilities, are critical, especially in an era where data
sensitivity is paramount. Additionally, licensing is important, as it defines the permissible uses
of the tool, particularly in commercial settings.

Belay et al. 1397

posthumanism.co.uk

The evaluation of open-source web application testing tools reveals a multifaceted web
application in the digital ecosystem world, with each tool offering distinct strengths and
functionalities tailored to various testing needs. Among the most prominent tools are OWASP
ZAP, Acunetix, Nikto, UniScan, w3af, and Burp Suite, which are open-source tools.

A thorough comparison of these tools highlights several critical factors affecting their
effectiveness. Testing Types: Each tool specializes in different methodologies, such as static
analysis (SAST), dynamic analysis (DAST), and interactive application security testing (IAST).
Automation Capabilities: The level of automation offered varies.

This comprehensive examination of open-source web application testing tools empowers teams
to make well-informed decisions tailored to their specific projects. By assessing the unique
features, strengths, and weaknesses of each tool in relation to their testing requirements, this
analysis implies organizations can choose the most appropriate tools to enhance their web
development processes and use the best tools for testing their web application to measure the
security capability of web application security after lot of effort and strategical evaluation and
investigation the open source web application testing tools comparison Rank was listed below
table.

Rank Tool Total Score

1 Burp Suite 49

2 OWASP ZAP 49

3 Metasploit 49

4 Maltego 48

5 W3AF 44

6 Nessus 44

7 Acunetix 44

8 Arachni 44

9 Postman 38

10 Wscan 36

11 Skipfish 35

12 Webshell 34

13 Vega 33

14 Grinder 33

15 SQLMap 32

16 Nuclei 31

17 UniScan 31

18 Wapiti 25

19 Nikto 24

20 Dirb 24

1398 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

Comparison Rank

 Graphical analysis of testing tools comparison

Conclusion on Tool Evaluation and comparison

The assessment of various security tools reveals a diverse range, each possessing distinct
strengths and weaknesses tailored to different user requirements and contexts.

 Burp Suite Burp Suite emerges as a frontrunner in web application security testing,
known for its robust performance and substantial community support. Although its
complexity may challenge beginners, its extensive features are invaluable for seasoned
security professionals seeking thorough analysis.

 OWASP Zap: OWASP Zap serves as an excellent starting point for newcomers, thanks

Belay et al. 1399

posthumanism.co.uk

to its intuitive interface and strong community backing. However, its limitations in
performance and automation may reduce its effectiveness for advanced users who need
detailed evaluations.

 Acunetix Acunetix excels across all assessed criteria, making it a versatile option for
both novice and expert users. Its seamless automation and comprehensive coverage
enable efficient vulnerability identification without significant drawbacks.

 Nikto and UniScan : Both Nikto and UniScan cater to basic scanning needs, appealing
to users who prioritize simplicity. However, their limited performance and automation
capabilities restrict their effectiveness for thorough testing, positioning them more as
tools for quick assessments rather than in-depth evaluations.

 W3af and Vega: w3af and Vega are accessible for beginners but lack the performance
and automation features necessary for comprehensive security assessments. They may
serve well for introductory tasks but fall short for users requiring more robust solutions.

 SQLMap and Arachni : SQLMap is a powerful tool for SQL injection testing, ideal
for those with technical proficiency. Arachni, although effective for automated scans,
may require additional effort to fully leverage its capabilities, indicating a compromise
between usability and thorough coverage.

 wapiti, Wscan, and Webshell These tools, despite being user-friendly, demonstrate
poor performance and limited automation, making them suitable only for basic tasks.
They may fulfill specific needs but are not advisable for users seeking reliable,
comprehensive security evaluations.

 Skipfish and Dirb: Skip fish and Drib are straightforward tools for simple tasks, but
their lack of performance metrics and advanced features may limit their effectiveness in
serious security testing.

 Grinder Grinder requires further evaluation, as its absence of documented performance
metrics raises concerns about its reliability in practical use.

 Metasploit is a powerful exploitation framework ideal for penetration testing, featuring
a large array of exploits. However, it demands a higher level of expertise, which can
pose challenges for some users.

 Maltego specializes in data mining and link analysis, effectively visualizing
relationships between data, but it is not specifically tailored for security testing and may
require additional tools for complete assessments.

 Nessus is well-known for its thorough vulnerability scanning and a wide range of
plugins, making it a highly regarded option in the industry; however, being a commercial
product, it may be less accessible for certain users. Conversely,

 Postman is excellent for API testing, offering a user-friendly interface that facilitates
automation and collaboration, though it mainly focuses on API testing and lacks
comprehensive security evaluation features.

Overall Evaluation

In summary, this evaluation emphasizes the necessity of aligning tool selection with user
expertise and specific security requirements. While some tools excel in versatility and depth,

1400 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

others cater primarily to basic functions. Users are urged to carefully consider their needs,
balancing ease of use with the imperative for comprehensive security assessments to ensure
effective vulnerability management.

Research Validity Evaluation

When we compare open-source web security testing tools, it's crucial to take a comprehensive
approach that includes various criteria to gauge their overall effectiveness and usability. This
assessment focuses on twenty important factors:

To Validating the result of a comparison of open-source web application testing tools can be
approached systematically using a structured methodology. First, it is crucial to establish
evaluation criteria that performance accuracy and reliability, user-friendliness, community

support, automation and scalability, thorough coverage, and integration, reporting quality

and extensibility. Next, choose a diverse range of tools for comparison the selective twenty (20)
sampling open-source version

To ensure a thorough evaluation, develop testing scenarios that replicate real-world use cases.
These scenarios should encompass functional testing, performance testing, security testing, API
testing, and user experience assessment. For example, the functional testing scenario could
automate user journeys on a sample web application, while performance testing could simulate
multiple user requests to evaluate load handling. Each scenario should have well-defined
objectives, methods, and validation steps to facilitate effective comparison of results.

After creating the scenarios, conduct tests under consistent conditions, ensuring that the test
environment and application versions remain uniform across all tools. Once testing is complete,
gather and analyze results based on the predefined criteria, focusing on metrics such as success
rates, average response times, vulnerability detection, and user satisfaction scores.

Finally, document the findings in a detailed report that outlines the strengths and weaknesses of
each tool, along with recommendations tailored to specific needs. Visual aids like charts and
tables can enhance the clarity of comparisons, making the report more accessible and informative
for professionals. This structured approach guarantees a comprehensive and objective evaluation
of open-source web application testing tools and raking the result based on evaluation criteria.

In summary Validating of a comparison of open-source web application testing tools can be
systematically and strategic accomplished through a structured methodology that includes
several essential steps and validity procedure:

 Define Evaluation Criteria: Establish specific criteria for comparison, emphasizing
factors such as user-friendliness, supported features, integration options, community
engagement, performance indicators, and the quality of reports.

 Select Tools for Comparison: Choose a varied selection of open-source tools for
evaluation selective twenty (20) sample open-source version of Postman, and Cypress.

 Create Testing Scenarios: Design realistic scenarios that reflect typical use cases. Each
scenario should focus on different testing dimensions, including functional testing,
performance testing, security testing, API testing, and user experience assessment.

 Execute Tests: Conduct each scenario under uniform conditions to ensure equitable
comparisons, maintaining a consistent test environment and application versions across
all tools.

Belay et al. 1401

posthumanism.co.uk

 Collect and Analyze Results: Gather and assess the results according to your criteria,
utilizing relevant metrics such as success rates, response times, vulnerability
identification, and user satisfaction ratings.

 Document Findings: Develop a detailed report that summarizes the comparison,
highlighting the strengths and weaknesses of each tool along with tailored
recommendations. Visual elements like charts or tables can enhance the clarity of the
comparisons.

Discussion

Analyzing open source web application web testing tools is essential for securing web
applications. To facilitate this, we suggest a benchmarking methodology that includes a
collection of standardized web applications targeting all OWASP Top 10 vulnerabilities. This
method not only sets new standards but also creates benchmark applications across diverse web
domains, enabling a thorough comparison and analysis of various scanners' results some key
points are below.

 Standardization of Metrics The absence of standard metrics in current literature makes it
challenging to compare results from different studies. Implementing a benchmarking
framework can establish consistent metrics that facilitate meaningful comparisons.

 Usability and Performance Evaluation It's crucial not only to identify vulnerabilities but
also to evaluate the usability and performance of web vulnerability scanners. This involves
assessing how user-friendly the tools are and their scanning efficiency.

 Literature Survey Our research indicates that there are few systematic surveys examining
the effectiveness of black box web vulnerability scanners. Most existing surveys do not
thoroughly explore the specific metrics and characteristics that influence a scanner's
effectiveness.

 Comprehensive Testing This study underscores the importance of conducting a systematic
review of widely used open-source web application vulnerability scanners. By enhancing
existing frameworks and focusing on new metrics, we can better summarize the capabilities
and performance of these tools.

 Common Vulnerabilities The analysis also covers common vulnerabilities identified across
various scanners, which aids in understanding the strengths and weaknesses of each tool.

 Tools Features Open-source scanners offer a cost-effective solution for organizations with
limited budgets, as they are free to use. Their customization capabilities allow users to
modify the source code to fit specific needs, enhancing adaptability

Future Work and Recommendation

Current research on establishing a standardized evaluation framework for commercial web
application testing tools is significantly limited. To address this deficiency, we recommend a
focused effort in several key areas for future studies.

Firstly, it is crucial to develop a Comprehensive Framework. Subsequent research should aim to
construct a thorough evaluation framework that encompasses various aspects of web application
testing, such as functionality, performance, security, and usability. This framework would
provide clear guidelines for evaluating the effectiveness and reliability of different testing tools,

1402 Perform Scanning and Comparison of Open Source Web Application

Journal of Posthumanism

ensuring that all relevant factors are considered in the assessment process.

Secondly, conducting Comparative Studies of commercial web application testing tools is
essential. These studies should examine the strengths and weaknesses of various tools in real-
world application contexts, offering practical insights for organizations looking to adopt new
solutions. By assessing a wide range of tools against standardized criteria, researchers can
provide valuable recommendations tailored to different development environments and business
requirements. This combined approach of framework development and tool comparison will
significantly improve the field of web application testing.

In summary to improve web application testing, it's essential to develop a comprehensive
framework that encompasses critical areas such as functionality, performance, security, and
usability. Furthermore, conducting comparative studies of testing tools is vital for evaluating
their strengths and weaknesses in practical scenarios. This integrated approach will yield
valuable insights and recommendations tailored to different development requirements,
enhancing the overall efficiency of web application testing.

Conclusion

Testing a web service is challenging activity that involves many characteristics such as response
time, throughput and latency etc. The same web service has been tested for performance with
these web service testing tools such as Apache Jmeter, Grinder, HttpRider and results has been
compared. The Comparison helps in the selection of the best tool. This research work can be
extended to more tools, more web services and different parameters to provide more realistic
results (Shikha Dhiman, 2016).

In open source web service tools i.e. Apache Jmeter, Grinder, HttpRider it is evident that each
tool had its own architecture and internal processes which form the basis of comparison study
of tools in terms of response time. The average response time observed for various tools is shown
in Table.

References
F. Okezie1, I. O.-A. (2019). A Critical Analysis of Software Testing Tools. International Conference on

Engineering for Sustainable World. Journal of Physics: Conference.

Muhammad Dhiauddin Mohamed Suffian, F. R. (2012). Performance Testing: Analyzing Differences of

Response Time between Performance Testing Tools . 2020 11th International Conference on .

Shikha Dhiman, P. S. (2016). International Journal of Computer Science and Mobile Computing.

International Journal of Computer Science and Mobile Computing .

F. Okezie1, I. O.-A. (2019). A Critical Analysis of Software Testing Tools. International Conference on

Engineering for Sustainable World. Journal of Physics: Conference.

Muhammad Dhiauddin Mohamed Suffian, F. R. (2012). Performance Testing: Analyzing Differences of

Response Time between Performance Testing Tools . 2020 11th International Conference on .

Shikha Dhiman, P. S. (2016). International Journal of Computer Science and Mobile Computing.

International Journal of Computer Science and Mobile Computing .

