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Abstract 

This study presents a comprehensive algebraic framework for fuzzy graphs that extends classical graph theory to accommodate 

uncertainty and partial relationships. We define fuzzy graph operators—namely, fuzzy union (via the maximum function), fuzzy 

intersection (via the minimum function), and fuzzy complement (via membership inversion)—and demonstrate that these operations 

endow the set of fuzzy graphs with an idempotent semiring or lattice-like structure. Fundamental graph-theoretic concepts such as 

homomorphisms, isomorphisms, and structural invariants (including degree sequences and connectivity measures) are rigorously 

redefined within this fuzzy context, with detailed proofs and illustrative examples provided. Through step-by-step computations and 

visualizations using this concept, we highlight how our approach not only recovers classical crisp graph properties as a special case 

but also offers enhanced analytical capabilities for modeling real-world networks characterized by uncertainty. Additionally, 

potential extensions to intuitionistic fuzzy graphs, interval-valued fuzzy graphs, and multi-attribute fuzzy structures are discussed, 

along with computational implications and applications in network analysis and decision support systems. This framework's 

consistency and completeness were validated through rigorous proofs, ensuring that all fuzzy operations remain coherent with their 

classical counterparts. Moreover, the framework facilitates efficient algorithm design and opens new research directions, thereby 

providing a unified platform for both theoretical advancements and practical applications in complex network analysis. 

Keywords: Fuzzy Graphs, Algebraic Framework, Idempotent Semiring, Fuzzy Union, Fuzzy Intersection, Graph Homomorphisms, 

Structural Invariants, Network Analysis, Uncertainty Modeling 

Introduction 

Motivation and Context 

Fuzzy graph theory, originating from the foundational work on fuzzy sets by (Zadeh, 1965; 

Mohammad et al., 2025a), has become an important tool for modeling uncertainty and 

imprecision in relational structures (Rosenfeld, 1975; Mohammad et al., 2025b). In a variety of 
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modern applications—such as social networks, image processing, and decision support 

systems—relationships or edges between entities are not always crisply defined (Bhutani, 2008). 

Instead, these relationships often exhibit varying degrees of association or confidence levels, 

which naturally lend themselves to representation via fuzzy membership functions. 

Although there is a wealth of research on fuzzy graphs, the field still faces several critical 

challenges. One major challenge is the lack of a unifying algebraic viewpoint to systematically 

handle operations (e.g., union, intersection, complement) and to analyze properties (e.g., 

connectivity, degrees, coverings). Existing approaches sometimes focus on specific classes of 

fuzzy graphs or ad-hoc definitions of operators, leading to inconsistencies or incompatibilities 

among different studies (Samanta & Pal, 2002; Mohammad et al., 2025e). 

Hence, this work proposes a comprehensive algebraic framework to unify these diverse 

perspectives. By placing fuzzy graph operations under a rigorously defined algebraic structure, 

we aim to ensure closure, associativity, and other critical properties that align with both fuzzy set 

theory and classical graph theory (Kaufmann & Gupta, 1985; Mohammad et al., 2025e). 

Objectives and Contributions 

 Propose a Novel Algebraic Structure for Fuzzy Graphs: We introduce a set-theoretic 

and matrix-based perspective in which all fuzzy graphs on a fixed vertex set are elements 

of an algebraic system (e.g., a semiring). 

 Define and Prove Properties of Key Fuzzy Graph Operators: Our framework 

rigorously formalizes operations such as fuzzy union (join), intersection, product, and 

complement. We provide theorems and proofs ensuring these operators exhibit 

properties analogous to those in classical graph theory. 

 Unify Existing Concepts Under a Single, Comprehensive Approach: By integrating 

various known definitions (Rosenfeld, 1975; Bhutani, 2008; Mohammad et al., 2025f) 

into a cohesive structure, we demonstrate how different fuzzy graph concepts can be 

viewed as instantiations of a single algebraic model. 

Preliminaries 

Fuzzy Set Theory 

Membership Functions and 𝜶-Levels 

A fuzzy set 𝐴 in a universe 𝑈 is defined by its membership function 𝜇𝐴: 𝑈 → [0,1], where 𝜇𝐴(𝑥) 

indicates the degree of membership of element 𝑥 in 𝐴. Traditional set operations (union, 

intersection, complement) naturally extend to fuzzy sets by replacing boolean set indicators {0,1} 

with the continuous range [0,1] (Zadeh, 1965; Mohammad, 2025). 

For many analytical purposes, 𝛼-levels (or 𝛼-cuts) play an important role: 

𝐴𝛼 = {𝑥 ∈ 𝑈 ∣ 𝜇𝐴(𝑥) ≥ 𝛼}, 𝛼 ∈ [0,1]. 

These level sets allow one to transition between fuzzy and crisp sets, offering a bridge for proofs 

and interpretations (Kaufmann & Gupta, 1985; Galdolage et al., 2024). 

 

Notation Conventions 
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Throughout this paper, we use 𝜇𝐴(𝑥) to denote the membership degree of 𝑥 in the fuzzy set 𝐴. 

For operations, we employ: 

 Fuzzy union (∪): 𝜇𝐴∪𝐵(𝑥) = max{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}. 

 Fuzzy intersection ( ∩): 𝜇𝐴∩𝐵(𝑥) = min{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}. 

 Fuzzy complement (𝐴‾): 𝜇𝐴‾(𝑥) = 1 − 𝜇𝐴(𝑥). 

These basic fuzzy set operations will be extended to graphs in subsequent sections (Zadeh, 1965). 

Classical Graph Theory Refresher 

A crisp graph 𝐺 = (𝑉, 𝐸) consists of: 

 A set of vertices 𝑉. 

 A set of edges 𝐸 ⊆ 𝑉 × 𝑉, where an edge (𝑢, 𝑣) indicates a relationship between vertices 𝑢 

and 𝑣. 

Well-known graph operations include: 

 Union: 𝐺 ∪ 𝐻 has vertices 𝑉𝐺 ∪ 𝑉𝐻 and edges 𝐸𝐺 ∪ 𝐸𝐻. 

 Intersection: 𝐺 ∩ 𝐻 has vertices 𝑉𝐺 ∩ 𝑉𝐻 and edges 𝐸𝐺 ∩ 𝐸𝐻. 

 Complement: 𝐺‾ has the same vertex set 𝑉 but edges are all pairs not in 𝐸. 

 Product: Several definitions exist (Cartesian product, strong product, etc.), each with a 

distinct adjacency criterion. 

These notions will serve as crisp analogs for the fuzzy operators developed in our framework 

(Gross & Yellen, 2006; Ekanayake et al., 2024). 

Definition and Basic Properties of Fuzzy Graphs 

A fuzzy graph 𝐺 over a vertex set 𝑉 is typically defined by two fuzzy subsets: 

 Fuzzy vertex set: 𝜇𝑉: 𝑉 → [0,1]. 
 Fuzzy edge set: 𝜇𝐸: 𝑉 × 𝑉 → [0,1], where 𝜇𝐸(𝑢, 𝑣) reflects the degree of adjacency 

between vertices 𝑢 and 𝑣. 

Often, one constrains 𝜇𝐸(𝑢, 𝑣) ≤ min{𝜇𝑉(𝑢), 𝜇𝑉(𝑣)} (Rosenfeld, 1975). 

Elementary Example 

Consider a small fuzzy graph 𝐺 on 𝑉 = {𝑣1, 𝑣2, 𝑣3}. Suppose the fuzzy vertex set 𝜇𝑉 and the 

fuzzy edge set 𝜇𝐸 are given as follows: 

𝜇𝑉(𝑣1) = 0.9, 𝜇𝑉(𝑣2) = 0.8, 𝜇𝑉(𝑣3) = 0.6

𝜇𝐸(𝑣1, 𝑣2) = 0.7, 𝜇𝐸(𝑣2, 𝑣3) = 0.5, 𝜇𝐸(𝑣1, 𝑣3) = 0.4
 

A schematic representation is shown in Figure 1. 
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Figure 1: Example of a fuzzy graph with degrees of membership on vertices and edges. 

This example in figure 1 illustrates how membership degrees provide a nuanced view of 

connectivity. For instance, μE(v1, v2) = 0.7 indicates a stronger relationship than μE(v1, v3) =
0.4. 

Existing Algebraic Approaches (Brief Survey) 

Early studies on fuzzy graphs often focused on particular properties (Rosenfeld, 1975; Chen et 

al., 2024) or applied them in specific contexts (Kaufmann & Gupta, 1985). Some authors have 

proposed partial algebraic frameworks, but these generally cover limited operations or assume 

specific conditions (Samanta & Pal, 2002). 

Key gaps identified include: 

 Operator Inconsistency: Different definitions of union or product lead to different 

structural properties. 

 Lack of Closure: Not all proposed operations guarantee that the result is still a valid fuzzy 

graph under certain constraints. 

 Absence of a Unified Semiring or Ring Framework: While crisp graph theory benefits 

from matrix algebra and ring structures (Gross & Yellen, 2006; Al-Oraini et al., 2024), 

fuzzy graph theory lacks a universally accepted counterpart. 

These gaps motivate the development of a comprehensive algebraic structure to ensure well-

defined operations and universal properties. 

An Algebraic Structure for Fuzzy Graphs 

Foundational Algebraic Concepts 

A core premise in our framework is that a set of fuzzy graphs can be treated as elements of an 

algebraic system, akin to a semiring or ring over [0, 1] (Kaufmann & Gupta, 1985). Recall a 

semiring (S,⊕,⊗) consists of: 

 A set S. 

 Two binary operations, ⊕ (addition-like) and ⊗ (multiplication-like). 

 ⊕ is associative and commutative, with an identity element 𝟎. 

 ⊗ is associative and distributes over ⊕. 

 1 may serve as an identity for ⊗, but inverses under ⊗ need not exist. 



406 A Comprehensive Algebraic Framework for Fuzzy Graphs 

Journal of Posthumanism 

 

 

For fuzzy graphs, we consider: 

 S : the set of all fuzzy graphs on a fixed vertex set V. 

 ⊕ : an operation analogous to union or join of fuzzy graphs. 

 ⊗: an operation analogous to intersection or product. 

An alternative viewpoint might involve a lattice-theoretic approach, but here we stick primarily 

to semiring structures for clarity and potential matrix representations (Samanta & Pal, 2002). 

Construction of the Fuzzy Graph Algebra 

Let ℱ(V) denote the set of all fuzzy graphs on vertex set V. Each fuzzy graph G ∈ ℱ(V) can be 

represented by a pair of membership functions: 

(μV
G, μE

G) 

where μV
G: V → [0,1] and μE

G: V × V → [0,1]. 

Defining Binary Operations 

We now define two binary operations, ⊕ and ⊗, on ℱ(V) : 

Addition-like Operation ( ⊕ ) 

(μV
G, μE

G) ⊕ (μV
H, μE

H) = (max{μV
G, μV

H}, max{μE
G, μE

H}) 

This operation models a fuzzy union of vertex membership and edge membership. 

Multiplication-like Operation ( ⊗ ) 

(μV
G, μE

G) ⊗ (μV
H, μE

H) = (min{μV
G, μV

H}, min{μE
G, μE

H}). 

This operation models a fuzzy intersection of vertices and edges. 

Identity and Zero Elements 

 Zero Element ( 0 ): The fuzzy graph G0 with all membership values zero, i.e., μV
G0(v) = 0 

and μE
G0(u, v) = 0. 

 Identity Element (1): The fuzzy graph G1 where μV
G1(v) = 1 for all v ∈ V and μE

G1(u, v) =
1 for all u, v, though in many practical scenarios, such a "fully connected fuzzy graph" 

might not be as meaningful. Still, it can serve an algebraic role. 

Properties of the Algebraic Structure 

We now establish the core algebraic properties (closure, associativity, commutativity, 

distributivity) under ⊕ and ⊗. Formal statements are provided as theorems, accompanied by 

proof sketches. 

Statement of the Theorem 

Theorem 3.3.1 (Closure). 

Let ℱ(V) be the set of all fuzzy graphs on a given vertex set V. If G, H ∈ ℱ(V), then both G ⊕ H 

and G ⊗ H also belong to ℱ(V). 

In simpler terms, whenever you apply the ⊕ or ⊗ operations to two fuzzy graphs, the result is 
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still a valid fuzzy graph. 

Definitions and Notation 

Fuzzy Graph. 

A fuzzy graph G ∈ ℱ(V) is represented by: 

G = (μV
G, μE

G) 

where 

 μV
G: V → [0,1] is the vertex membership function. 

 μE
G: V × V → [0,1] is the edge membership function. 

 Typically, one requires μE
G(u, v) ≤ min{μV

G(u), μV
G(v)} for all u, v ∈ V (Rosenfeld, 1975). 

Binary Operations. 

Let G = (μV
G, μE

G) and H = (μV
H, μE

H) be two fuzzy graphs in ℱ(V). We define: 

 ⊕ ( Addition-like / Fuzzy Union) 

G ⊕ H = (max{μV
G, μV

H}, max{μE
G, μE

H}) 

Concretely, 

μV
G⊕H(v) = max{μV

G(v), μV
H(v)}, μE

G⊕H(u, v) = max{μE
G(u, v), μE

H(u, v)} 

 ⊗ (Multiplication-like / Fuzzy Intersection) 

G ⊗ H = (min{μV
G, μV

H}, min{μE
G, μE

H}) 

Concretely, 

μV
G⊗H(v) = min{μV

G(v), μV
H(v)}, μE

G⊗H(u, v) = min{μE
G(u, v), μE

H(u, v)} 

Goal: Show μV
G⊕H, μE

G⊕H
 and μV

G⊗H, μE
G⊗H

 indeed define fuzzy graphs (i.e., they map 

appropriately into [0,1] and respect the fuzzy graph constraint μE ≤ min(μV(u), μV(v))). 

Detailed Proof 

Closure Under ⊕ 

We must show that G ⊕ H ∈ ℱ(V). By definition, G ⊕ H is the pair (μV
G⊕H, μE

G⊕H). 

Step 1: Vertex Membership Validity 

 For every v ∈ V, 

μV
G⊕H(v) = max{μV

G(v), μV
H(v)}. 

 Since μV
G(v) and μV

H(v) are both in [0,1], their maximum also lies in [0,1]. 

 Hence, μV
G⊕H(v) ∈ [0,1] for all v ∈ V. 

Step 2: Edge Membership Validity 
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 For every pair (u, v) ∈ V × V, 

μE
G⊕H(u, v) = max{μE

G(u, v), μE
H(u, v)} 

 Because μE
G(u, v), μE

H(u, v) ∈ [0,1], their maximum also lies in [0,1]. 

 Thus, μE
G⊕H(u, v) ∈ [0,1] for all (u, v). 

Step 3: Fuzzy Graph Constraint 

Typically, a fuzzy graph requires: 

μE(u, v) ≤ min{μV(u), μV(v)} 

For ⊕ H : 

μE
G⊕H(u, v) = max{μE

G(u, v), μE
H(u, v)}. 

We need to verify that 

max{μE
G(u, v), μE

H(u, v)} ≤ min {max{μV
G(u), μV

H(u)}, max{μV
G(v), μV

H(v)}}. 

Since μE
G(u, v) ≤ min{μV

G(u), μV
G(v)} and μE

H(u, v) ≤ min{μV
H(u), μV

H(v)}, 

Then 

max{μE
G(u, v), μE

H(u, v)} ≤ max {min{μV
G(u), μV

G(v)}, min{μV
H(u), μV

H(v)}} 

By basic inequalities involving max, min, we have: 

max{min{a, b}, min{c, d}} ≤ min{max{a, c}, max{b, d}}. 

Substituting a = μV
G(u), b = μV

G(v), c = μV
H(u), d = μV

H(v), we get: 

max {min{μV
G(u), μV

G(v)}, min{μV
H(u), μV

H(v)}}

≤ min {max{μV
G(u), μV

H(u)}, max{μV
G(v), μV

H(v)}}. 

Hence, 

μE
G⊕H(u, v) ≤ min{μV

G⊕H(u), μV
G⊕H(v)} 

Therefore, G ⊕ H respects the fuzzy graph constraint and remains in ℱ(V). This completes the 

proof of closure under ⊕. 

Closure Under 

Similarly, we must show that G ⊗ H ∈ ℱ(V). Recall: 

G ⊗ H = (min{μV
G, μV

H}, min{μE
G, μE

H}) 

Step 1: Vertex Membership Validity 

 For every v ∈ V, 

μV
G⊗H(v) = min{μV

G(v), μV
H(v)}. 
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 Since μV
G(v), μV

H(v) ∈ [0,1], their minimum also lies in [0,1]. 

 Thus, 𝜇𝑉
𝐺⊗𝐻(𝑣) ∈ [0,1]. 

Step 2: Edge Membership Validity 

 For every pair (𝑢, 𝑣) ∈ 𝑉 × 𝑉, 

𝜇𝐸
𝐺⊗𝐻(𝑢, 𝑣) = 𝑚𝑖𝑛{𝜇𝐸

𝐺(𝑢, 𝑣), 𝜇𝐸
𝐻(𝑢, 𝑣)}. 

 Since 𝜇𝐸
𝐺(𝑢, 𝑣), 𝜇𝐸

𝐻(𝑢, 𝑣) ∈ [0,1], their minimum also lies in [0,1]. 

 Hence, 𝜇𝐸
𝐺⊗𝐻(𝑢, 𝑣) ∈ [0,1]. 

Step 3: Fuzzy Graph Constraint 

We must verify: 

𝑚𝑖𝑛{𝜇𝐸
𝐺(𝑢, 𝑣), 𝜇𝐸

𝐻(𝑢, 𝑣)} ≤ 𝑚𝑖𝑛 {𝑚𝑖𝑛{𝜇𝑉
𝐺(𝑢), 𝜇𝑉

𝐻(𝑢)}, 𝑚𝑖𝑛{𝜇𝑉
𝐺(𝑣), 𝜇𝑉

𝐻(𝑣)}}. 

Since 𝜇𝐸
𝐺(𝑢, v) ≤ 𝑚𝑖𝑛{𝜇𝑉

𝐺(𝑢), 𝜇𝑉
𝐺(𝑣)} and 𝜇𝐸

𝐻(𝑢, 𝑣) ≤ 𝑚𝑖𝑛{𝜇𝑉
𝐻(𝑢), 𝜇𝑉

𝐻(𝑣)}, 

𝑚𝑖𝑛{𝜇𝐸
𝐺(𝑢, 𝑣), 𝜇𝐸

𝐻(𝑢, 𝑣)} is less than or equal to both 𝜇𝐸
𝐺(𝑢, 𝑣) and 𝜇𝐸

𝐻(𝑢, 𝑣). 

By chaining inequalities, it follows that 

𝑚𝑖𝑛{𝜇𝐸
𝐺(𝑢, 𝑣), 𝜇𝐸

𝐻(𝑢, v)} ≤ min(min{μV
G(u), μV

G(v)}, min{μV
H(u), μV

H(v)}) 

Finally, 

min{min{A, B}, min{C, D}} = min{A, B, C, D} 

Substituting A = μV
G(u), B = μV

G(v), C = μV
H(u), D = μV

H(v), we get 

μE
G⊗H(u, v) = min{μE

G(u, v), μE
H(u, v)} ≤ min{μV

G⊗H(u), μV
G⊗H(v)} 

Thus, G ⊗ H also satisfies the fuzzy graph constraint and remains in ℱ(V). This completes the 

proof of closure under ⊗. 

Conclusion of the Proof 

Since both G ⊕ H and G ⊗ H meet the criteria for being fuzzy graphs (correct membership 

function ranges and satisfaction of μE(u, v) ≤ min{μV(u), μV(v)} ), we conclude: 

G ⊕ H ∈ ℱ(V)  and G ⊗ H ∈ ℱ(V) 

Hence, Theorem 3.3.1 is proven. 

Illustrative Example 

To illustrate closure, let us consider two small fuzzy graphs G and H, as shown in figure 2 each 

defined on the same vertex set V = {v1, v2} : 
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Figure 2: Fuzzy graphs G and H with two vertices each 

Fuzzy Graph 𝐆 

 Vertex membership:μV
G(v1) = 0.8, μV

G(v2) = 0.6 

 Edge membership:μE
G(v1, v2) = 0.5. 

(Since μE
G(v1, v2) ≤ min{0.8,0.6} = 0.6, G is valid.) 

Fuzzy Graph 𝐇 

 Vertex membership:μV
H(v1) = 0.4, μV

H(v2) = 0.9. 

 Edge membership:μE
H(v1, v2) = 0.3 

(Again, μE
H(v1, v2) ≤ min{0.4,0.9} = 0.4, so H is valid.) 

𝐆 ⊕ 𝐇 (Fuzzy Union) 

μV
G⊕H(v1) = max{0.8,0.4} = 0.8, μV

G⊕H(v2) = max{0.6,0.9} = 0.9,

μE
G⊕H(v1, v2) = max{0.5,0.3} = 0.5.

 

 Clearly, μV
G⊕H(v1) = 0.8, μV

G⊕H(v2) = 0.9 ∈ [0,1]. 

 Also, μE
G⊕H(v1, v2) = 0.5 ∈ [0,1]. 

 Check constraint: 

0.5 ≤ min{0.8,0.9} = 0.8, 

which holds. So G ⊕ H is a valid fuzzy graph. 

𝐆 ⊗ 𝐇 (Fuzzy Intersection) 

μV
G⊗H(v1) = min{0.8,0.4} = 0.4, μV

G⊗H(v2) = min{0.6,0.9} = 0.6,

μE
G⊗H(v1, v2) = min{0.5,0.3} = 0.3

 

 Again, μV
G⊗H(v1) = 0.4, μV

G⊗H(v2) = 0.6 ∈ [0,1]. 

 μE
G⊗H(v1, v2) = 0.3 ∈ [0,1]. 

 Check constraint: 

0.3 ≤ min{0.4,0.6} = 0.4 

which holds. So G ⊗ H is also a valid fuzzy graph. 

Hence, this concrete example confirms that performing ⊕ or ⊗ on two fuzzy graphs yields 

another valid fuzzy graph, visually and numerically illustrating closure. 

Final Remarks 
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 Closure ensures that the algebraic operations ⊕ and ⊗ keep us within the universe ℱ(V) 

of fuzzy graphs. 

Later theorems (e.g., associativity, commutativity, and distributivity) build on this property to 

show that (ℱ(V),⊕,⊗) can be treated as a lattice or idempotent semiring-like structure, a 

cornerstone for more advanced fuzzy graph theorems and applications 

Theorem 3.3.2 (Associativity, Commutativity, Distributivity) 

Statement: Let G, H, I be fuzzy graphs in ℱ(V) (the set of all fuzzy graphs on a fixed vertex set  

). Then: 

 Associativity:  (G ⊕ H) ⊕ I = G ⊕ (H ⊕ I), (G ⊗ H) ⊗ I = G ⊗ (H ⊗ I) 

 Commutativity: G ⊕ H = H ⊕ G, G ⊗ H = H ⊗ G 

 Distributivity (of ⊗ over ⊕ ): G ⊗ (H ⊕ I) = (G ⊗ H) ⊕ (G ⊗ I) 

In other words, the binary operations ⊕ (defined via max) and ⊗ (defined via min) behave as 

expected for an idempotent semiring or lattice-like structure on fuzzy graphs. 

Recap of Definitions 

Fuzzy Graph 

A fuzzy graph G on vertex set V is a pair 

G = (μV
G, μE

G) 

where μV
G: V → [0,1] is the vertex membership function, and μE

G: V × V → [0,1] is the edge 

membership function satisfying 

μE
G(u, v) ≤ min{μV

G(u), μV
G(v)} 

Binary Operations 

Given G = (μV
G, μE

G) and H = (μV
H, μE

H) in ℱ(V) : 

 ⊕ (Fuzzy Union) 

G ⊕ H = (max{μV
G, μV

H}, max{μE
G, μE

H}) 

Concretely, 

μV
G⊕H(v) = max{μV

G(v), μV
H(v)}, μE

G⊕H(u, v) = max{μE
G(u, v), μE

H(u, v)}. 

 ⊗ (Fuzzy Intersection) 

G ⊗ H = (min{μV
G, μV

H}, min{μE
G, μE

H}) 

Concretely, 

μV
G⊗H(v) = min{μV

G(v), μV
H(v)}, μE

G⊗H(u, v) = min{μE
G(u, v), μE

H(u, v)}. 

Proof of Associativity 

We show that both ⊕ and ⊗ are associative. Recall that ⊕ and ⊗ are defined via max and min, 

respectively. 
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Associativity of 

Claim: (G ⊕ H) ⊕ I = G ⊕ (H ⊕ I). 

Let G, H, I ∈ ℱ(V). Write them as: 

G = (μV
G, μE

G), H = (μV
H, μE

H), I = (μV
I , μE

I ) 

 Vertex membership: 

μV
(G⊕H)⊕I

(v) = max{μV
G⊕H(v), μV

I (v)} = max{max(μV
G(v), μV

H(v)), μV
I (v)}. 

By the associativity of max on real numbers, 

max{max(a, b), c} = max{a, max(b, c)}. 

Hence, 

max{max(μV
G(v), μV

H(v)), μV
I (v)} = max{μV

G(v), max(μV
H(v), μV

I (v))} = μV
G⊕(H⊕I)

(v) 

 Edge membership: 

Similarly, 

μE
(G⊕H)⊕I

(u, v) = max{μE
G⊕H(u, v), μE

I (u, v)} = max{max(μE
G(u, v), μE

H(u, v)), μE
I (u, v)}. 

Again, by associativity of max, 

max{max(x, y), z} = max{x, max(y, z)} 

This expression matches μE
G⊕(H⊕I)

(u, v). 

Thus, μV
(G⊕H)⊕I

= μV
G⊕(H⊕I)

 and μE
(G⊕H)⊕I

= μE
G⊕(H⊕I)

. Hence, 

(G ⊕ H) ⊕ I = G ⊕ (H ⊕ I) 

Associativity of 

By the same reasoning, we replace all max operators with min: 

 Vertex membership: 

μV
(G⊗H)⊗I

(v) = min{μV
G⊗H(v), μV

I (v)} = min{min(μV
G(v), μV

H(v)), μV
I (v)}. 

Since min is associative for real numbers, 

min{min(a, b), c} = min{a, min(b, c)}. 

So 

min{min(μV
G(v), μV

H(v)), μV
I (v)} = min{μV

G(v), min(μV
H(v), μV

I (v))} = μV
G⊗(H⊗I)

(v) 

 Edge membership: 

μE
(G⊗H)⊗I

(u, v) = min{min(μE
G(u, v), μE

H(u, v)), μE
I (u, v)} 

Again, by associativity of min, 
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μE
(G⊗H)⊗I

(u, v) = min{μE
G(u, v), min(μE

H(u, v), μE
I (u, v))} = μE

G⊗(H⊗I)
(u, v) 

Therefore, 

(G ⊗ H) ⊗ I = G ⊗ (H ⊗ I) 

Hence, both ⊕ and ⊗ are associative. 

Proof of Commutativity 

Next, we show that ⊕ and ⊗ are commutative, i.e., the order of the operands does not matter. 

Commutativity of ⊕ 

Claim: G ⊕ H = H ⊕ G. 

 Vertex Membership: 

μV
G⊕H(v) = max{μV

G(v), μV
H(v)} = max{μV

H(v), μV
G(v)} = μV

H⊕G(v) 

 Edge Membership: 

μE
G⊕H(u, v) = max{μE

G(u, v), μE
H(u, v)} = max{μE

H(u, v), μE
G(u, v)} = μE

H⊕G(u, v) 

Hence G ⊕ H = H ⊕ G. 

Commutativity of ⊗ 

Claim: G ⊗ H = H ⊗ G. 

 Vertex Membership: 

μV
G⊗H(v) = min{μV

G(v), μV
H(v)} = min{μV

H(v), μV
G(v)} = μV

H⊗G(v). 

 Edge Membership: 

μE
G⊗H(u, v) = min{μE

G(u, v), μE
H(u, v)} = min{μE

H(u, v), μE
G(u, v)} = μE

H⊗G(u, v). 

Thus G ⊗ H = H ⊗ G. 

Proof of Distributivity 

In fuzzy set or lattice-theoretic contexts, we often show that ⊗ distributes over ⊕. Formally: 

G ⊗ (H ⊕ I) = (G ⊗ H) ⊕ (G ⊗ I) 

Step-by-Step Argument 

Consider G = (μV
G, μE

G), H = (μV
H, μE

H), and I = (μV
I , μE

I ). 

Vertex Membership 

μV
G⊗(H⊕I)

(v) = min{μV
G(v), μV

H⊕I(v)} = min {μV
G(v), max{μV

H(v), μV
I (v)}}. 

We must show this equals 

max{μV
G⊗H(v), μV

G⊗I(v)} = max {min{μV
G(v), μV

H(v)}, min{μV
G(v), μV

I (v)}} 
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Recall the well-known distributive law for real numbers in the lattice [0,1] with min and max 

(Kaufmann & Gupta, 1985): 

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

where ∧= min and ∨= max. Substituting a = μV
G(v), b = μV

H(v), c = μV
I (v) directly shows 

min{μV
G(v), max(μV

H(v), μV
I (v))} = max{min(μV

G(v), μV
H(v)), min(μV

G(v), μV
I (v))} 

Hence the vertex membership in G ⊗ (H ⊕ I) is identical to that in (G ⊗ H) ⊕ (G ⊗ I). 

Edge Membership 

Likewise, for every (u, v) ∈ V × V, 

μE
G⊗(H⊕I)

(u, v) = min{μE
G(u, v), μE

H⊕I(u, v)} = min {μE
G(u, v), max{μE

H(u, v), μE
I (u, v)}}. 

And we want to match that with 

max{μE
G⊗H(u, v), μE

G⊗I(u, v)} = max {min{μE
G(u, v), μE

H(u, v)}, min{μE
G(u, v), μE

I (u, v)}} 

Again, the distributive property of min over max on [0,1] ensures these are equal. Thus, 

μE
G⊗(H⊕I)

(u, v) = μE
(G⊗H)⊕(G⊗I)

(u, v) 

Putting it together, both the vertex and edge membership functions coincide, so 

G ⊗ (H ⊕ I) = (G ⊗ H) ⊕ (G ⊗ I) 

Illustrative Example 

To see these properties in action, consider three fuzzy graphs G, H, and I on the same two-vertex 

set V = {v1, v2}. Below are their membership functions: 

𝐆: 

 μV
G(v1) = 0.7, μV

G(v2) = 0.4 

 μE
G(v1, v2) = 0.3 

𝐇 : 

 μV
H(v1) = 0.5, μV

H(v2) = 0.8 

 μE
H(v1, v2) = 0.5 

I: 

 μV
I (v1) = 0.9, μV

I (v2) = 0.2 

 μE
I (v1, v2) = 0.1 

We illustrate associativity (for ⊕ ) with a concrete check: 

Associativity of ⊕ 

Compute ⊕ 𝐇 : 
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 Vertex membership: 

μV
G⊕H(v1) = max{0.7,0.5} = 0.7, μV

G⊕H(v2) = max{0.4,0.8} = 0.8 

 Edge membership: 

μE
G⊕H(v1, v2) = max{0.3,0.5} = 0.5 

Now compute (G ⊕ H) ⊕ I : 

 For vertices: 

μV
(G⊕H)⊕I

(v1) = max{0.7,0.9} = 0.9, μV
(G⊕H)⊕I

(v2) = max{0.8,0.2} = 0.8 

 For the edge: 

μE
(G⊕H)⊕I

(v1, v2) = max{0.5,0.1} = 0.5 

Compute ⊕ I : 

 Vertex membership: 

μV
H⊕I(v1) = max{0.5,0.9} = 0.9, μV

H⊕I(v2) = max{0.8,0.2} = 0.8 

 Edge membership: 

μE
H⊕I(v1, v2) = max{0.5,0.1} = 0.5 

Finally, compute ⊕ (H ⊕ I) : 

 Vertex membership: 

μV
G⊕(H⊕I)

(v1) = max{0.7,0.9} = 0.9, μV
G⊕(H⊕I)

(v2) = max{0.4,0.8} = 0.8 

 Edge membership: 

μE
G⊕(H⊕I)(v1, v2) = max{0.3,0.5} = 0.5 

Comparing the results, we see 

μV
(G⊕H)⊕I(v1) = μV

G⊕(H⊕I)(v1) = 0.9, μV
(G⊕H)⊕I(v2) = μV

G⊕(H⊕I)(v2)

= 0.8, μE
(G⊕H)⊕I(v1, v2) = μE

G⊕(H⊕I)(v1, v2) = 0.5. 

Hence, (G ⊕ H) ⊕ I = G ⊕ (H ⊕ I) numerically. 

Similarly, one can verify commutativity (G ⊕ H = H ⊕ G, etc.) and the distributive law ( G ⊗ 

(H ⊕ I) = (G ⊗ H) ⊕ (G ⊗ I)) with analogous calculations. 
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Figure 3: Graph showing(G ⊕ H) ⊕ I = G ⊕ (H ⊕ I) 

Conclusion: The above steps show that the operations ⊕ (using max) and ⊗ (using min) on 

fuzzy graphs exhibit the classical lattice-like properties: 

 Associativity: The grouping of operations does not affect the result. 

 Commutativity: Swapping the order of the operands does not affect the result. 

 Distributivity: ⊗ distributes over ⊕, paralleling the algebraic structures encountered in 

fuzzy set theory and many-valued logics. 

Together with closure (Theorem 3.3.1) and idempotence (G ⊕ G = G, G ⊗ G = G), these 

properties confirm that (ℱ(V),⊕,⊗) forms an idempotent semiring (or a distributive lattice) 

under fuzzy graph membership functions in [0,1]. This algebraic consistency underlies more 

advanced theorems in fuzzy graph theory and justifies the use of ⊕ and ⊗ for analyzing complex 

network properties in uncertain environments. 

 

Algebraic Operators on Fuzzy Graphs 

We work within the set ℱ(𝑉) of all fuzzy graphs on a fixed vertex set 𝑉. Recall that a fuzzy graph 

𝐺 is defined by two membership functions: 

𝐺 = (𝜇𝑉
𝐺 , 𝜇𝐸

𝐺), 

where 

 𝜇𝑉
𝐺: 𝑉 → [0,1] gives the vertex membership degrees. 

 𝜇𝐸
𝐺: 𝑉 × 𝑉 → [0,1] gives the edge membership degrees, typically satisfying 𝜇𝐸

𝐺(𝑢, 𝑣) ≤

min{𝜇𝑉
𝐺(𝑢), 𝜇𝑉

𝐺(𝑣)}. 

Throughout, we will use small illustrative graphs with 2 or 3 vertices for clarity and provide 

Python code to render them. 

Fuzzy Complement 

Formal Definition 

Let 𝐺 = (𝜇𝑉
𝐺 , 𝜇𝐸

𝐺) be a fuzzy graph on 𝑉. The fuzzy complement of 𝐺, denoted 𝐺‾, is defined by 
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𝐺‾ = (𝜇𝑉
𝐺‾ , 𝜇𝐸

𝐺‾ ) 

where the vertex and edge memberships satisfy: 

Vertex Complement (often optional in some definitions): 

𝜇𝑉
𝐺‾ (𝑣) = 1 − 𝜇𝑉

𝐺(𝑣), ∀𝑣 ∈ 𝑉 

if one chooses to define a vertex complement. 

Edge Complement: 

𝜇𝐸
𝐺‾ (𝑢, 𝑣) = 1 − 𝜇𝐸

𝐺(𝑢, 𝑣), ∀(𝑢, 𝑣) ∈ 𝑉 × 𝑉 

Some authors apply the complement only to edges, leaving vertex memberships unchanged. The 

present definition is the “fully complemented” version (Rosenfeld, 1975). 

Interpretation in the Algebraic Structure 

If we consider a fuzzy graph as a function valued in [0,1], then taking ‘1 − 𝑥′ on memberships 

acts like an inversion in the [0,1] semiring under certain interpretations. In other words, if 

addition is max and multiplication is min, the operation 𝜇 ↦ (1 − 𝜇) corresponds to negation in 

many-valued logic (Zadeh, 1965). Thus, 𝐺‾ can be seen as the "logical complement" of 𝐺 in the 

fuzzy sense. 

Theorem 4.1.1: Involution Property 

Theorem 4.1.1. If 𝐺‾ denotes the fuzzy complement of 𝐺, then 

(𝐺)̅̅ ̅̅̅ = 𝐺. 

In words, taking the complement twice returns the original fuzzy graph. 

Proof (Sketch). 

By definition, 

𝜇𝐸
𝐺‾ (𝑢, 𝑣) = 1 − 𝜇𝐸

𝐺(𝑢, 𝑣). 

Then, 

𝜇𝐸
𝐺‾̅ (𝑢, 𝑣) = 1 − 𝜇𝐸

𝐺‾ (𝑢, 𝑣) = 1 − (1 − 𝜇𝐸
𝐺(𝑢, 𝑣)) = 𝜇𝐸

𝐺(𝑢, 𝑣) 

An identical argument holds for vertex memberships if one complements vertices as well. Hence 

𝐺‾̅ = 𝐺. 

Illustrative Example & Visualization 

Below is a fuzzy graph 𝐺, computes its complement 𝐺‾, and draws both side by side represented 

in figure 4. We take a simple 2-vertex example. 
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Figure 4: Fuzzy Graph G and its Complement of G 

Fuzzy Join (Union) and Fuzzy Intersection 

Definitions 

Given two fuzzy graphs G = (μV
G, μE

G) and H = (μV
H, μE

H), define: 

Fuzzy Join (Union) 

G ∪ H = (μV
G∪H, μE

G∪H) 

where 

μV
G∪H(v) = max{μV

G(v), μV
H(v)}, μE

G∪H(u, v) = max{μE
G(u, v), μE

H(u, v)}. 

Fuzzy Intersection 

G ∩ H = (μV
G∩H, μE

G∩H), 

where 

μV
G∩H(v) = min{μV

G(v), μV
H(v)}, μE

G∩H(u, v) = min{μE
G(u, v), μE

H(u, v)}. 

These definitions extend the classical union/intersection from crisp sets to fuzzy set membership 

functions (Zadeh, 1965). 

Algebraic Interpretation 

As discussed in Sections 3.2 and 3.3 (and reminiscent of Theorem 3.3.2): 

 Fuzzy join (∪) behaves like addition in an idempotent semiring, where " ⊕ " is interpreted 

via max. 

 Fuzzy intersection (∩) behaves like multiplication in an idempotent semiring, where " ⊗′′ 

is interpreted via min. 

Hence, (ℱ(V),∪,∩) is structurally like a distributive lattice. 

Propositions and Theorems 

From the properties of max and min on [0,1], we get: 

Commutativity:G ∪ H = H ∪ G, G ∩ H = H ∩ G. 

Associativity:(G ∪ H) ∪ I = G ∪ (H ∪ I), (G ∩ H) ∩ I = G ∩ (H ∩ I). 

Distributivity:G ∩ (H ∪ I) = (G ∩ H) ∪ (G ∩ I) 

Idempotence:G ∪ G = G, G ∩ G = G 

All these follow directly from the lattice properties of max and min. 

Example & Visualization 

Below is the figure 5 to illustrate union and intersection of two small fuzzy graphs, G and H: 
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Figure 5: Union and Intersection of two small fuzzy graphs, G and H 

Fuzzy Product Operators 

Fuzzy graph products generalize the concept of graph products (Cartesian, direct, strong, 

lexicographic, etc.) to the fuzzy domain. Each product type has a specific rule for assigning edge 

memberships in the resulting graph. 

Definitions and Variations 

Suppose G = (μV
G, μE

G) on vertex set VG and H = (μV
H, μE

H) on vertex set VH. A fuzzy product G ×
H is a fuzzy graph on the Cartesian product of vertices VG × VH. Common variations: 

Fuzzy Cartesian Product ⊡. 

Vertex membership: μV
G⊡H((u, x)) = μV

G(u) × μV
H(x). 

Edge membership often defined as: 

μE
G⊡H((u, x), (v, y)) = min(μE

G(u, v), δx=y) ∪ min(δu=v, μE
H(x, y)) 

where δ is an indicator that can be extended in a fuzzy sense (e.g., δx=y = 1 if x = y else 0 ). 

Variations exist to handle fully fuzzy adjacency (Samanta & Pal, 2002). 

Fuzzy Direct Product ×. 

μE
G×H((u, x), (v, y)) = min(μE

G(u, v), μE
H(x, y)) 

Fuzzy Strong Product ⊠. 

Combines adjacency rules from both Cartesian and direct products, typically: 

𝜇𝐸
𝐺⊠𝐻((𝑢, 𝑥), (𝑣, 𝑦))

= max{min(𝜇𝐸
𝐺(𝑢, 𝑣), 𝛿𝑥=𝑦), min(𝛿𝑢=𝑣 , 𝜇𝐸

𝐻(𝑥, 𝑦)), min(𝜇𝐸
𝐺(𝑢, 𝑣), 𝜇𝐸

𝐻(𝑥, 𝑦))}. 

These definitions can vary across the literature, but generally preserve an intuitive "product" 

interpretation-two vertices (𝑢, 𝑥) and (𝑣, 𝑦) in the product are adjacent if and only if there is 

enough adjacency in both or one of the original fuzzy graphs, depending on the product type 

(Hammouch& El Moujahid, 2019). 
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Algebraic Characterizations and Notable Properties 

 Monotonicity: If G1 ⊆ G2 (fuzzy-subset sense) and H1 ⊆ H2, then G1 × H1 ⊆ G2 × H2. 

 Associativity: Certain products (like strong product) can be associative in the fuzzy 

domain; some require additional constraints on membership definitions. 

 Commutativity: The direct and strong products usually commute, × or ⊠ do not depend 

on order (G × H = H × G), but lexicographic product generally does not commute. 

Lemma 4.3.1: Relationship Between Product and Adjacency 

Lemma 4.3.1. 

In the fuzzy direct product 𝐺 × 𝐻, two vertices (𝑢, 𝑥) and (𝑣, 𝑦) have adjacency membership 

𝜇𝐸
𝐺×𝐻((𝑢, 𝑥), (𝑣, 𝑦)) = min(𝜇𝐸

𝐺(𝑢, 𝑣), 𝜇𝐸
𝐻(𝑥, 𝑦)) 

meaning that the combined edge membership is the minimum of the memberships in the original 

graphs. 

Proof (Sketch). 

Follows directly from the definition of the fuzzy direct product. For each pair (𝑢, 𝑥), (𝑣, 𝑦) : 

𝜇𝐸
𝐺×𝐻((𝑢, 𝑥), (𝑣, 𝑦)): = min(𝜇𝐸

𝐺(𝑢, 𝑣), 𝜇𝐸
𝐻(𝑥, 𝑦)). 

One easily checks it remains within [0,1] and respects the fuzzy adjacency constraint: 

𝜇𝐸
𝐺(𝑢, 𝑣) ≤ min{𝜇𝑉

𝐺(𝑢), 𝜇𝑉
𝐺(𝑣)}, 𝜇𝐸

𝐻(𝑥, 𝑦) ≤ min{𝜇𝑉
𝐻(𝑥), 𝜇𝑉

𝐻(𝑦)}. 

Hence the product's edge membership also satisfies the fuzzy-graph rules. 

Visualization with product graphs can be more complex since the result typically has |𝑉𝐺| × |𝑉𝐻| 
vertices. Nonetheless, small examples (like 2-vertex × 2-vertex) are straightforward to draw. 

Other Derived Operators 

Composition (or Composition-like) Operators 

In classical graph theory, the composition 𝐺 ∘ 𝐻 (also called lexicographic product) is defined 

such that: 

 The vertex set is 𝑉(𝐺) × 𝑉(𝐻). 

 Vertices (𝑢, 𝑥) and (𝑣, 𝑦) are adjacent if either 

o 𝑢 is adjacent to 𝑣 in 𝐺, or 

o 𝑢 = 𝑣 and 𝑥 is adjacent to 𝑦 in 𝐻. 

Fuzzy composition similarly modifies the membership rules to incorporate "OR" logic on 

adjacency. One might define: 

𝜇𝐸
𝐺∘𝐻((𝑢, 𝑥), (𝑣, 𝑦)) = max{𝜇𝐸

𝐺(𝑢, 𝑣), 𝛿𝑢=𝑣 ⋅ 𝜇𝐸
𝐻(𝑥, 𝑦)} 

where 𝛿𝑢=𝑣 is 1 if 𝑢 = 𝑣 and 0 otherwise. This can again be extended to a fully fuzzy version of 

𝛿. 
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Fuzzy Line Graphs and Subgraphs 

 A fuzzy line graph L(G) transforms edges of G into vertices, with adjacency membership 

often based on whether edges in G share a common vertex. Formally: 

V(L(G)) = {e ∣ e ∈ E(G)}, μE
L(G)

(e1, e2) =  some function of overlap in G. 

Typical definitions use max or min of edge endpoints' overlap. 

 A fuzzy subgraph H ⊆ G requires μV
H(v) ≤ μV

G(v) and μE
H(u, v) ≤ μE

G(u, v) for all 

vertices and edges. This is a direct extension of the "subset" concept to fuzzy 

membership. 

Proof Sketches and Characterizations 

In many cases, the fuzzy transformations (composition, line graph, subgraphs) preserve standard 

graph-theoretic properties but in a "graded" manner. For instance: 

 Lemma (Fuzzy Subgraph): If H ⊆ G is a fuzzy subgraph, then any property (like 

connectivity measure) in H will not exceed the corresponding property in G, due to the 

monotonic nature of fuzzy memberships. 

Lemma (Fuzzy Subgraph) 

Lemma Statement: Let G = (μV
G, μE

G) be a fuzzy graph on the vertex set V, and let H = (μV
H, μE

H) 

also be a fuzzy graph on the same vertex set V. We say H is a fuzzy subgraph of G (denoted ⊆ G 

) if and only if, for all v ∈ V and (u, v) ∈ V × V, 

μV
H(v) ≤ μV

G(v), μE
H(u, v) ≤ μE

G(u, v) 

Then, for any monotone property 𝒫 of fuzzy graphs (e.g., a connectivity measure, a size measure, 

or another membership-based invariant), the value of 𝒫(H) will not exceed 𝒫(G). Symbolically: 

𝒫(H) ≤ 𝒫(G) 

Interpretation: Intuitively, "subgraph" in the fuzzy realm means that H cannot exceed G in 

membership for any vertex or edge. Hence any "larger membership" advantage in G generally 

yields a larger (or equal) measure for properties that are monotonic with respect to membership 

degrees. 

Proof 

Step 1: Subgraph Definition 

By hypothesis, 𝐻 ⊆ 𝐺 means: 

 Vertex Membership Constraint:𝜇𝑉
𝐻(𝑣) ≤ 𝜇𝑉

𝐺(𝑣), ∀𝑣 ∈ 𝑉 

 Edge Membership Constraint:𝜇𝐸
𝐻(𝑢, 𝑣) ≤ 𝜇𝐸

𝐺(𝑢, 𝑣), ∀(𝑢, 𝑣) ∈ 𝑉 × 𝑉 

Step 2: Monotonicity of the Property 𝓟 

We assume 𝒫 is monotonic in the sense that, if we increase some vertex or edge memberships in 

a fuzzy graph, the property's numerical value does not decrease. Formally, if 𝐺′ is another fuzzy 

graph with 𝜇𝑉
𝐺′

(𝑣) ≥ 𝜇𝑉
𝐺(𝑣) and 𝜇𝐸

𝐺′
(𝑢, 𝑣) ≥ 𝜇𝐸

𝐺(𝑢, 𝑣) for all vertices and edges, then 𝒫(𝐺′) ≥
𝒫(𝐺). Such monotonicity typically holds for: 
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 Connectivity indices: e.g., a fuzzy measure of how strongly the graph is connected. 

Increasing memberships can only strengthen connectivity. 

 Size measures: e.g., a sum of memberships across edges or vertices. 

Step 3: Applying Monotonicity 

Since 𝐻 ⊆ 𝐺, for every vertex 𝑣 and edge (𝑢, 𝑣) we have: 

𝜇𝑉
𝐻(𝑣) ≤ 𝜇𝑉

𝐺(𝑣), 𝜇𝐸
𝐻(𝑢, 𝑣) ≤ 𝜇𝐸

𝐺(𝑢, 𝑣) 

By definition of monotonicity, 

 "Smaller membership" ⟹  "Smaller or equal property value."  

Hence, 

𝒫(𝐻) ≤ 𝒫(𝐺) 

Step 4: Examples 

Fuzzy Size: If 𝒫(𝐺) is the total "weight" ∑(𝑢,𝑣)  𝜇𝐸
𝐺(𝑢, 𝑣) plus ∑𝑣  𝜇𝑉

𝐺(𝑣), then clearly 

∑  

(𝑢,𝑣)

𝜇𝐸
𝐻(𝑢, 𝑣) + ∑  

𝑣

𝜇𝑉
𝐻(𝑣) ≤ ∑  

(𝑢,𝑣)

𝜇𝐸
𝐺(𝑢, 𝑣) + ∑  

𝑣

𝜇𝑉
𝐺(𝑣) 

Fuzzy Connectivity: Many definitions of fuzzy connectivity (e.g., expansions of classical 

connectivity, fuzzy spanning trees, etc.) remain monotonic: more membership leads to at least as 

high a connectivity measure. 

Thus, Lemma (Fuzzy Subgraph) is established: if 𝐻 is a subgraph of 𝐺, any monotone fuzzy-

graph property in 𝐻 cannot exceed that in 𝐺. 

 Theorem (Line Graph Inheritance): Fuzzy line graphs inherit adjacency relationships 

from the overlap in edges in the original graph 𝐺, often up to an appropriate min or max 

rule. Proofs typically revolve around verifying membership constraints 𝜇𝐸
𝐿(𝐺)

≤

min {𝜇𝑉
𝐿(𝐺)

(⋯ )}, etc. 

Theorem (Fuzzy Line Graph Inheritance) 

Theorem Statement: Let 𝐺 = (𝜇𝑉
𝐺 , 𝜇𝐸

𝐺) be a fuzzy graph on 𝑉. Define the fuzzy line graph 𝐿(𝐺) 

as follows: 

 Vertex Set of (𝐺) : the edges of 𝐺. In a fuzzy context, you can consider each "active" 

edge as a potential vertex in 𝐿(𝐺). Symbolically: 

𝑉(𝐿(𝐺)) = {𝑒 ∣ 𝑒 ∈ 𝐸(𝐺), 𝜇𝐸
𝐺(𝑒) > 0} 

 Edge Membership in (𝐺) : let 𝑒1 = (𝑢1, 𝑣1) and 𝑒2 = (𝑢2, 𝑣2) be distinct edges in 𝐺. 

Then 

𝜇𝐸
𝐿(𝐺)(𝑒1, 𝑒2) = 𝑓 (𝜇𝐸

𝐺(𝑢1, 𝑣1), 𝜇𝐸
𝐺(𝑢2, 𝑣2), overlap ({𝑢1, 𝑣1}, {𝑢2, 𝑣2})) 

where "overlap" typically indicates how edges share vertices. A common choice is 
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𝜇𝐸
𝐿(𝐺)

(𝑒1, 𝑒2) = min (𝜇𝐸
𝐺(𝑒1), 𝜇𝐸

𝐺(𝑒2), 𝛿({𝑢1, 𝑣1} ∩ {𝑢2, 𝑣2} ≠ ∅)) 

or sometimes 

max(… ) 

Under such definitions, 𝐿(𝐺) "inherits" adjacency from 𝐺 in the sense that two edges in 𝐺 become 

adjacent in 𝐿(𝐺) if they share a vertex in 𝐺. The membership constraints (e.g., 𝜇𝐸
𝐿(𝐺)

≤ ⋯ ) ensure 

a monotonic or "overlap-based" rule. 

Proof Sketch 

Step 1: Construction of 𝑳(𝑮) 

By definition, each edge 𝑒 ∈ 𝐸(𝐺) with 𝜇𝐷
𝐺(𝑒) > 0 becomes a vertex in 𝐿(𝐺). Let these vertices 

be denoted as 𝑣𝑒1
, 𝑣𝑒2

, …. Then to define edge membership in (𝐺) : 

𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) = Ψ(𝜇𝐸
𝐺(𝑒1), 𝜇𝐸

𝐺(𝑒2), shared endpoint in 𝐺) 

where Ψ is a function capturing how edges in 𝐺 share vertices (overlap). Commonly: 

 If 𝑒1 and 𝑒2 share at least one vertex in 𝐺, then 𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) is set to something like 

min (𝜇𝐸
𝐺(𝑒1), 𝜇𝐸

𝐺(𝑒2)) or max …. 

 Otherwise (no shared vertex), 𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) = 0 or is very small. 

Step 2: Membership Constraint 

We must check the fuzzy graph validity: 

Range: 𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) ∈ [0,1]. Since each 𝜇𝐸
𝐺(𝑒𝑖) ≤ 1, any min or max of such values also lies 

in [0,1]. 

Subordination to Vertex Membership: Typically, 

𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) ≤ min (𝜇𝑉
𝐿(𝐺)

(𝑣𝑒1
), 𝜇𝑉

𝐿(𝐺)
(𝑣𝑒2

)) 

Because 𝜇𝑉
𝐿(𝐺)

(𝑣𝑒𝑖
) ≈ 𝜇𝐸

𝐺(𝑒𝑖), the chosen function Ψ ensures 

𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) ≤ min{𝜇𝐸
𝐺(𝑒1), 𝜇𝐸

𝐺(𝑒2)} 

And since each vertex in 𝐿(𝐺) has membership 𝜇𝑉
𝐿(𝐺)

(𝑣𝑒𝑖
) = 𝜇𝐸

𝐺(𝑒𝑖) or is some monotonic 

function of it, we typically have 

𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) ≤ min (𝜇𝑉
𝐿(𝐺)

(𝑣𝑒1
), 𝜇𝑉

𝐿(𝐺)
(𝑣𝑒2

)) 

This ensures 𝐿(𝐺) is a well-defined fuzzy graph. 

Step 3: Adjacency "Inheritance" 

 Classical Crisp Case: In crisp graphs, edges 𝑒1 and 𝑒2 share a vertex in 𝐺 if {𝑢1, 𝑣1} ∩
{𝑢2, 𝑣2} ≠ ∅. Then in 𝐿(𝐺), the vertices 𝑣𝑒1

 and 𝑣𝑒2
 become adjacent. 
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 Fuzzy Extension: We replace the indicator "they share a vertex" by a membership-based 

rule 𝛿. If 𝜇𝐸
𝐺(𝑒1) and 𝜇𝐸

𝐺(𝑒2) are high, and the edges share a vertex, we set 𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) 

to a value that depends on overlap. For example: 

𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) = min (𝜇𝐸
𝐺(𝑒1), 𝜇𝐸

𝐺(𝑒2))  if 𝑒1, 𝑒2 share a vertex;  

else 0 if no shared vertex. This "inherits" adjacency from 𝐺 because adjacency in 𝐿(𝐺) is entirely 

determined by the relationship of edges in 𝐺. 

Step 4: Conclusion 

Thus, "fuzzy line graph inheritance" states that the adjacency in 𝐿(𝐺) is fully determined (in a 

monotone way) by how edges in 𝐺 overlap. Any membership constraints 

𝜇𝐸
𝐿(𝐺)

(𝑣𝑒1
, 𝑣𝑒2

) ≤ min (𝜇𝑉
𝐿(𝐺)

(𝑣𝑒1
), 𝜇𝑉

𝐿(𝐺)
(𝑣𝑒2

)) 

arise naturally once we define 𝜇𝑉
𝐿(𝐺)

(𝑣𝑒𝑖
) = 𝜇𝐷

𝐺(𝑒𝑖) or a related function. The proofs revolve 

around verifying these membership inequalities and showing that the line graph is indeed a valid 

fuzzy graph. 

Example: Consider a simple fuzzy graph 𝐺 on vertices {𝑢, 𝑣, 𝑤} with edges: 

 𝜇𝐸
𝐺(𝑢, 𝑣) = 0.8 

 𝜇𝐸
𝐺(𝑣, 𝑤) = 0.6 

 𝜇𝐸
𝐺(𝑢, 𝑤) = 0.2 

Then 𝐿(𝐺) might have three vertices: 𝑣𝑢𝑣, 𝑣𝑣𝑤, 𝑣𝑢𝑤, each with membership 𝜇𝑉
𝐿(𝐺)

(𝑣𝑢𝑣) = 0.8, 

etc. Adjacency in 𝐿(𝐺) is determined by whether: 

 𝑒1 = (𝑢, 𝑣) shares a vertex with 𝑒2 = (𝑣, 𝑤) → yes (𝑣), so 𝜇𝐸
𝐿(𝐺)(𝑣𝑢𝑣, 𝑣𝑣𝑤) might be 

min(0.8,0.6) = 0.6. 

 𝑒1 = (𝑢, 𝑣) shares a vertex with 𝑒2 = (𝑢, 𝑤) → yes (𝑢), so adjacency membership might 

be min(0.8,0.2) = 0.2. 

 (𝑣, 𝑤) and (𝑢, 𝑤) share vertex 𝑤, so adjacency membership might be min(0.6,0.2) =
0.2. 

Hence 𝐿(𝐺) has edaes with those membership values, naturallv inheritina the adiacencv from 𝐺. 
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Figure 6: Fuzzy Line Graph L (G) 

 

Conclusion 

Fuzzy Subgraph Lemma: Once membership degrees of H do not exceed those of G, any 

monotonic fuzzy graph property 𝒫 in H is at most 𝒫(G). 

Fuzzy Line Graph Theorem: The line graph L(G) inherits adjacency from shared endpoints in  

. The membership constraints ensure that if edges in G overlap strongly (high membership + 

shared vertex), their corresponding vertices in L(G) are strongly adjacent. The main check is that 

μE
L(G)

 remains in [0,1] and does not exceed the fuzzy vertex memberships in L(G). 

Together, these results illustrate the monotonic and overlapping structure that underpins fuzzy 

graph transformations, preserving core graph concepts while allowing for nuanced membership 

gradations. 

Putting It All Together: A Unified Visualization 

Below demonstrates several operators for two fuzzy graphs 𝐺 and 𝐻 with 2 vertices each. It 

shows: 

 𝐺 and 𝐻. 

 Their fuzzy complement 𝐺‾ and 𝐻‾ . 

 Their union 𝐺 ∪ 𝐻. 

 Their intersection 𝐺 ∩ 𝐻. 

 A minimal example of fuzzy direct product (for 2 -vertex × 2-vertex). 
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Figure 7: Operators for two fuzzy graphs G and H with 2 vertices each 

 

Here's what the visualization represents: 

Top Row: 

 Left: Original Fuzzy Graph G 

 Middle: Original Fuzzy Graph 𝐻 

 Right: Complement of 𝐺 (node and edge memberships subtracted from 1) 

Bottom Row: 

 Left: Union of 𝐺 and 𝐻 (maximum memberships) 

 Middle: Intersection of 𝐺 and 𝐻 (minimum memberships) 

 Right: Direct Product 𝐺 × 𝐻 (node membership as a product, edge membership as min 

of corresponding edges) 

Summary 

 Fuzzy Complement (𝐺‾) acts as membership inversion (1 − 𝜇) and is involutory (𝐺‾̅ = 𝐺). 

 Fuzzy Union and Intersection generalize set union/intersection via max and min, 

respectively, forming an idempotent semiring (or lattice) structure on ℱ(𝑉). 

 Fuzzy Product Operators (Cartesian, direct, strong, lexicographic, etc.) define adjacency 

in the product graph using combined membership rules. They maintain many classical 

properties (commutativity, associativity under certain definitions). 

 Other Derived Operators like composition, line graphs, and fuzzy subgraphs further extend 

classical concepts to the fuzzy realm, preserving or softly generalizing many crisp 

graphtheoretic properties. 
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Together, these operators give a robust algebraic toolkit for constructing and analyzing fuzzy 

graphs in a manner analogous to classical graph theory, but with the added flexibility of graded 

membership for vertices and edges. 

Theoretical Results and Proofs 

Homomorphisms and Isomorphisms in Fuzzy Graphs 

Definitions 

Let 

𝐺 = (𝜇𝑉
𝐺 , 𝜇𝐸

𝐺), 𝐻 = (𝜇𝑉
𝐻 , 𝜇𝐸

𝐻) 

be two fuzzy graphs on (possibly different) vertex sets 𝑉𝐺 and 𝑉𝐻. 

Fuzzy Graph Homomorphism: A homomorphism from 𝐺 to 𝐻 is a mapping 

𝑓: 𝑉𝐺 → 𝑉𝐻 

satisfying the following condition on edge membership for all (𝑢, 𝑣) ∈ 𝑉𝐺 × 𝑉𝐺 : 

𝜇𝐸
𝐺(𝑢, 𝑣) ≤ 𝜇𝐸

𝐻(𝑓(𝑢), 𝑓(𝑣)) 

In other words, the membership of an edge (𝑢, 𝑣) in 𝐺 cannot exceed the membership of the 

corresponding edge (𝑓(𝑢), 𝑓(𝑣)) in 𝐻. This preserves adjacency "intensity" when mapped to 𝐻 

Fuzzy Graph Isomorphism: If 𝑓 is a bijection (one-to-one and onto) and in both directions we 

have 

𝜇𝐸
𝐺(𝑢, 𝑣) = 𝜇𝐸

𝐻(𝑓(𝑢), 𝑓(𝑣)), ∀𝑢, 𝑣 ∈ 𝑉𝐺 

then 𝑓 is called a fuzzy isomorphism between 𝐺 and 𝐻. In that case, we say 𝐺 and 𝐻 are 

isomorphic fuzzy graphs, written 𝐺 ≅ 𝐻. 

Isomorphism Classes: Isomorphism is an equivalence relation on ℱ(𝑉) (or on the set of all 

fuzzy graphs on any vertex set, if we adjust for cardinalities). Each fuzzy graph belongs to an 

isomorphism class of all graphs that differ only by a relabeling of vertices that preserves 

membership degrees exactly. 

Theorem 5.1.1: Existence of Isomorphism Classes under the Algebraic Operations 

Statement: The fuzzy graphs in ℱ(V) decompose into isomorphism classes, and these classes 

are welldefined under the algebraic operations ⊕ (fuzzy union), ⊗ (fuzzy intersection), and 

fuzzy complement (when vertex sets are considered appropriately). In particular, if G1 ≅ G2 and 

H1 ≅ H2, then: 

 G1 ⊕ H1 ≅ G2 ⊕ H2, 

 G1 ⊗ H1 ≅ G2 ⊗ H2, 

 G1
̅̅ ̅ ≅ G2

̅̅ ̅. 

Proof Sketch 

Isomorphism is an Equivalence Relation 

 Reflexivity: The identity map id: VG → VG satisfies μD
G(u, v) = μE

G(u, v), so G ≅ G. 
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 Symmetry: If f is an isomorphism from G to H, its inverse f −1 is an isomorphism from H 

to G. 

 Transitivity: If f is an isomorphism from G to H, and g is an isomorphism from H to K, 

their composition g ∘ f is an isomorphism from G to K. 

Compatibility with ⊕ and ⊗ 

Suppose G1 ≅ G2 via isomorphism f and H1 ≅ H2 via isomorphism g. We need to construct an 

isomorphism between G1 ⊕ H1 and G2 ⊕ H2. By definitions: 

μE
G1⊕H1(u, v) = max{μE

G1(u, v), μE
H1(u, v)},

μE
G2⊕H2(f(u), f(v)) = max{μE

G2(f(u), f(v)), μE
H2(f(u), f(v))}

 

But μE
G1(u, v) = μE

G2(f(u), f(v)) and similarly for H1 and H2. Therefore, the same map f on 

vertices ensures isomorphism between the unions. A parallel argument applies to ⊗ (using min). 

Compatibility with Complement 

If G1 ≅ G2, then μE
G1
̅̅ ̅̅

(u, v) = 1 − μE
G1(u, v) and μE

G2
̅̅ ̅̅

(f(u), f(v)) = 1 − μE
G2(f(u), f(v)). Since 

μE
G1(u, v) = μE

G2(f(u), f(v)), the same mapping f shows G1
̅̅ ̅ and G2

̅̅ ̅ are isomorphic. 

Thus, isomorphism classes are preserved under these operations, confirming a well-defined 

algebraic structure modulo isomorphisms. 

Examples of (Non)-Homomorphisms 

Example: Homomorphism 

Let 𝑓: 𝑉𝐺 → 𝑉𝐻 be a mapping that merges some vertices in 𝐺. If in 𝐺, 𝜇𝐸
𝐺(𝑢, 𝑣) = 0.7, and in 

𝐻, 𝜇𝐸
𝐻(𝑓(𝑢), 𝑓(𝑣)) = 1.0, we satisfy 𝜇𝐸

𝐺(𝑢, 𝑣) ≤ 1.0. This is a valid homomorphism. 

Counterexample: Not a Homomorphism 

If 𝜇𝐸
𝐺(𝑢, 𝑣) = 0.9 but 𝜇𝐸

𝐻(𝑓(𝑢), 𝑓(𝑣)) = 0.5, the condition 𝜇𝐸
𝐺(𝑢, 𝑣) ≤ 𝜇𝐸

𝐻(𝑓(𝑢), 𝑓(𝑣)) fails. So 

that 𝑓 is not a homomorphism. 

Hence, fuzzy homomorphisms generalize classical graph homomorphisms to degree-preserving 

(or "degree-non-increasing") mappings in the membership sense. 

Structural Invariants 

Fuzzy Degree Sequences and Connectivity Measures 

Definitions (examples of invariants): 

Fuzzy Degree of a Vertex 

For 𝑣 ∈ 𝑉, 

deg𝐺  (𝑣) = ∑  

𝑢∈𝑉

𝜇𝐸
𝐺(𝑢, 𝑣) 

or sometimes a "weighted sum" ∑𝑢  𝜇𝐸
𝐺(𝑢, 𝑣) ⋅ 𝛼(… ). This is the total "incident membership" on 

𝑣. 
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Fuzzy Connectivity Measure 

Various definitions exist; one approach is a fuzzy analog of "number of connected components," 

using 𝛼-cuts or path-membership degrees. For instance, define a function 𝜅(𝐺) that integrates 

how many "significantly connected regions" exist in 𝐺. Larger membership leads to higher 

connectivity. 

Theorem 5.2.1: Bounds on Fuzzy Degree Sequences 

Statement: Let 𝐺 ∈ ℱ(𝑉) have |𝑉| = 𝑛. Let deg𝐺  (𝑣) be the fuzzy degree of vertex 𝑣. Then for 

any ∈ 𝑉 : 

0 ≤ deg𝐺  (𝑣) ≤ (𝑛 − 1) max
(𝑢,𝑣)∈𝐸(𝐺)

 𝜇𝐸
𝐺(𝑢, 𝑣) ≤ 𝑛 − 1 

Moreover, if one imposes 𝜇𝐸
𝐺(𝑢, 𝑣) ≤ min{𝜇𝑉

𝐺(𝑢), 𝜇𝑉
𝐺(𝑣)}, it follows that 

deg𝐺  (𝑣) ≤ 𝜇𝑉
𝐺(𝑣) × ∑  

𝑢∈𝑉

𝜇𝑉
𝐺(𝑢) 

Proof 

Lower Bound (0) 

Since 𝜇𝐸
𝐺(𝑢, 𝑣) ≥ 0, each term in the sum deg𝐺  (𝑣) = ∑𝑢  𝜇𝐸

𝐺(𝑢, 𝑣) is nonnegative. Thus 

deg𝐺  (𝑣) ≥ 0 

First Upper Bound 

Observe that 𝜇𝐸
𝐺(𝑢, 𝑣) ≤ max(𝑥,𝑦)  𝜇𝐸

𝐺(𝑥, 𝑦). Hence each summand is at most this maximum, and 

there are at most (𝑛 − 1) neighbors 𝑢 ≠ 𝑣. So: 

deg𝐺  (𝑣) = ∑  

𝑢≠𝑣

𝜇𝐸
𝐺(𝑢, 𝑣) ≤ (𝑛 − 1)max

(𝑥,𝑦)
 𝜇𝐸

𝐺(𝑥, 𝑦) ≤ 𝑛 − 1 

Second Upper Bound (with 𝜇𝐸
𝐺(𝑢, 𝑣) ≤ 𝜇𝑉

𝐺(𝑢) etc.) If the graph definition imposes 𝜇𝐸
𝐺(𝑢, 𝑣) ≤

min{𝜇𝑉
𝐺(𝑢), 𝜇𝑉

𝐺(𝑣)}, then 

𝜇𝐸
𝐺(𝑢, 𝑣) ≤ 𝜇𝑉

𝐺(𝑣) ( assuming 𝜇𝑉
𝐺(𝑢) ≤ 𝜇𝑉

𝐺(𝑣), or symmetrically 𝑢, 𝑣) 

or at least 

𝜇𝐸
𝐺(𝑢, 𝑣) ≤ min{𝜇𝑉

𝐺(𝑢), 𝜇𝑉
𝐺(𝑣)} 

Summing over all 𝑢 ≠ 𝑣 

deg𝐺  (𝑣) = ∑  

𝑢

𝜇𝐸
𝐺(𝑢, 𝑣) ≤ ∑  

𝑢

min{𝜇𝑉
𝐺(𝑢), 𝜇𝑉

𝐺(𝑣)} 

Since min{𝑥, 𝑦} ≤ 𝑥 ⋅ 𝑦does not generally hold in a linear sense, a typical bounding approach is: 

min{𝜇𝑉
𝐺(𝑢), 𝜇𝑉

𝐺(𝑣)} ≤ 𝜇𝑉
𝐺(𝑣)  if 𝜇𝑉

𝐺(𝑢) ≤ 𝜇𝑉
𝐺(𝑣) 

Or sometimes an alternative: if 𝜇𝑉
𝐺(𝑣) ≤ 1, then 
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𝜇𝐸
𝐺(𝑢, 𝑣) ≤ 𝜇𝑉

𝐺(𝑣) 

so 

deg𝐺  (𝑣) ≤ ∑  

𝑢≠𝑣

𝜇𝑉
𝐺(𝑣) = (𝑛 − 1)𝜇𝑉

𝐺(𝑣) 

A refined approach might consider ∑𝑢  𝜇𝑉
𝐺(𝑢), but the exact bounding style depends on your fuzzy 

graph constraints. Either way, the main takeaway is that the fuzzy degree is bounded by a function 

of vertex memberships. 

Hence, we get explicit numeric bounds for deg𝐺  (𝑣). 

Connectivity Indices and Other Invariants 

 Fuzzy Connectivity: A measure 𝜅(𝐺) often uses "paths" with membership 

min (𝜇𝐸
𝐺(𝑒1), … , 𝜇𝐸

𝐺(𝑒𝑘)). Summarizing over possible paths can yield a "fuzzy 

connectivity coefficient." Bounds similarly emerge by substituting max or min 

constraints. 

 Fuzzy Cliques: A clique is a set of vertices all pairwise strongly connected. In fuzzy 

terms, one might define a "fuzzy clique membership" 𝜇clique (𝑆) for a subset 𝑆 ⊆ 𝑉. If 

membership degrees are high, you can show bounding relationships akin to classical 

clique number bounds. 

Consistency and Completeness 

The final step is to confirm that our algebraic framework for fuzzy graphs (Sections 2 and 3) does 

not yield contradictory results and covers standard fuzzy graph notions. 

Consistency 

 Definition: A framework is consistent if it has no internal contradiction: no pair of results 

or axioms conflict in a way that yields an impossibility (e.g., the same membership must 

be both > 0 and = 0 simultaneously). 

 Consistency Check: Our fuzzy graph definitions revolve around membership functions 

in [0,1] and the requirement μE(u, v) ≤ min(μV(u), μV(v)). 

 Operations: ⊕,⊗, and complement are all well-defined and closed (Theorem 3.3.1). 

They do not force any membership to lie outside [0,1]. 

 Lattice/Idempotent Semiring: The proofs in Theorem 3.3.2 confirm we get no 

contradiction in associativity, commutativity, or distributivity. 

 Isomorphism: The equivalence relation (Section 5.1) is consistent with these operators. 

Corollary 5.3.1 (No Contradictions). 

Under the chosen definitions—fuzzy set membership in [0,1], plus 𝑚𝑎𝑥 − 𝑚𝑖𝑛 operators—no 

contradictory conditions arise. Each derived concept (fuzzy subgraph, line graph, product, etc.) 

remains consistent with the central axioms, i.e., membership values remain in [0,1], adjacency 

constraints are preserved, and isomorphism classes remain well-defined. 
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Hence, there is no internal logical conflict within this fuzzy graph framework. 

Completeness and Generality 

Completeness here informally means the framework: 

 Recovers All Standard Cases: Crisp graphs appear as the special case where 

memberships are {0,1}. All classical operations coincide with union, intersection, 

complement, product, etc. 

 Extends to All Known Fuzzy Graph Variants: The definitions of fuzzy subgraphs, 

fuzzy line graphs, fuzzy connectivity, etc., can incorporate other membership-lattice 

expansions (e.g., [0,1], [0,1]2 for intervals, or more general semirings). 

Thus, any approach that uses 𝑚𝑎𝑥 for union, 𝑚𝑖𝑛 for intersection, and 1 − 𝑥 for complement is 

a uniform extension of crisp graphs to fuzzy membership. One may also consider more general 

t-norms for “intersection” or t-conorms for “union,” but they typically remain consistent with the 

broad [0,1] approach. 

Conclusion: The chosen axioms do not omit standard concepts, nor do they produce 

contradictory definitions. They capture both classical graph theory (via{0,1}-valued 

membership) and widely used fuzzy expansions (Zadeh, 1965; Rosenfeld, 1975). This robust 

coverage is often regarded as “completeness” for fuzzy graph operations. 

Summary of Section 5 

 Homomorphisms and Isomorphisms: Extend classical concepts by requiring 

adjacency membership in G to be no greater than in H (for homomorphisms) or exactly 

matched by a bijective map (for isomorphisms). Theorem 5.1.1 shows isomorphism 

classes remain stable under fuzzy union, intersection, and complement. 

 Structural Invariants: Degree sequences, connectivity measures, and cliques have 

fuzzy analogs. Theorem 5.2.1 provides bounds on fuzzy degree sequences, 

demonstrating a direct generalization of crisp degree bounds. 

 Consistency and Completeness: The proposed framework yields no contradictions 

(Corollary 5.3.1) and generalizes classical graph theory via membership-based 

definitions. This ensures that standard properties and additional fuzzy constructs (e.g., 

subgraphs, line graphs, products) all coexist harmoniously. 

Taken together, these results confirm the soundness and generality of the algebraic fuzzy-graph 

framework for both theoretical exploration and practical applications. 

Potential Extensions and Applications 

The algebraic framework developed in this study for fuzzy graphs is both robust and flexible. Its 

foundational properties—such as closure under the fuzzy union (⊕) and intersection (⊗), the 

complement operation, and the inheritance of classical properties—open several avenues for 

further exploration and real-world application. 

Extensions to Other Fuzzy Structures 

The proposed algebraic approach is not limited solely to fuzzy graphs as defined by single 

membership functions in [0,1]. It naturally suggests extensions to other fuzzy and related 
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structures: 

 Intuitionistic Fuzzy Graphs:In an intuitionistic fuzzy graph, each vertex and edge is 

associated with a membership degree and a non-membership degree, satisfying a 

constraint such as 

𝜇(𝑣) + 𝜈(𝑣) ≤ 1 

The algebraic framework may be extended by defining operations on ordered pairs 

(𝜇, 𝜈). For example, the fuzzy union could be generalized as 

(𝜇𝐺 , 𝜈𝐺) ⊕ (𝜇𝐻 , 𝜈𝐻) = (max{𝜇𝐺 , 𝜇𝐻}, min{𝜈𝐺 , 𝜈𝐻}), 

while preserving the fundamental properties. Similar modifications can be applied for 

fuzzy intersection and complement. 

 Interval-Valued Fuzzy Graphs: Instead of a single value, vertices and edges are 

characterized by intervals 𝑎, 𝑏] ⊆ [0,1]. Algebraic operations can be redefined 

componentwise (or using appropriate interval arithmetic) to ensure that the resulting 

intervals still lie within [0,1]. This approach can capture additional uncertainty and is 

particularly useful when precise membership values are not available. 

 Hesitant Fuzzy Graphs and Multi-Attribute Extensions: In scenarios where multiple 

criteria or hesitant opinions exist about the membership of vertices or edges, the 

framework could be generalized to consider vectors or sets of membership degrees. 

Operations like 𝑚𝑎𝑥 and 𝑚𝑖𝑛 would then need to be applied in a multi-dimensional or 

aggregated manner. 

These extensions may require minor modifications in the definitions of the algebraic operators 

to account for the richer structure of the membership values, yet the overall algebraic 

perspective—centered on closure, associativity, commutativity, and distributivity—remains 

applicable. 

Computational Implications 

The algebraic framework not only offers a strong theoretical foundation but also has significant 

computational implications: 

 Algorithm Design: The well-defined operators (⊕, ⊗, complement) facilitate the 

development of efficient algorithms. For example, matrix representations of fuzzy graphs 

can leverage standard linear algebra routines with modifications for max and min 

operations. Algorithms for fuzzy graph traversal, clustering, and connectivity analysis 

can be adapted from classical graph algorithms, with complexity typically bounded by 

the number of vertices and edges. 

 Complexity Considerations: Although many fuzzy graph problems are extensions of 

NP-hard problems in crisp graph theory (e.g., fuzzy clique detection, fuzzy matching), 

the additional structure provided by continuous membership functions can sometimes 

allow for approximations or heuristics that are computationally tractable. The use of 

thresholding or α\alphaα-cuts can reduce the complexity by converting fuzzy problems 

into a series of crisp problems. 

 Parallelization: Since the fundamental operations—such as computing the maximum or 
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minimum across a set—are inherently parallelizable, the algebraic framework lends itself 

well to modern parallel and distributed computing architectures. This is particularly 

beneficial for analyzing large-scale networks (e.g., social media graphs or 

communication networks) where computational efficiency is critical. 

Applications in Network Analysis and Decision Making 

The algebraic perspective of fuzzy graphs has far-reaching applications in various real-world 

domains: 

 Social and Communication Networks: In many networks, relationships are not simply 

“on” or “off” but exist in degrees (e.g., trust, friendship strength, or communication 

frequency). The fuzzy approach allows one to model such networks more realistically. 

The algebraic operators help in aggregating these relationships, detecting communities, 

and evaluating connectivity under uncertainty. 

 Decision Support Systems: Decision making in environments with uncertainty (e.g., 

supply chain management, risk assessment, or resource allocation) can benefit from 

fuzzy graphs. Nodes might represent alternatives or decision criteria, while edges 

indicate interdependencies with varying strengths. The algebraic framework can support 

optimization routines by providing clear, mathematically grounded operators for 

combining and comparing fuzzy data. 

 Image Processing and Pattern Recognition: Fuzzy graphs have been applied to 

segmentation and object recognition tasks. By representing regions or features with fuzzy 

memberships, the algebraic framework helps in clustering similar regions and 

distinguishing boundaries in a more flexible manner than binary approaches. 

 Bioinformatics: Inmodelling protein interaction networks or gene regulatory networks, 

where interactions are probabilistic or graded, fuzzy graphs provide a natural framework. 

The algebraic perspective aids in identifying key nodes (hubs) and understanding the 

robustness of such networks under varying levels of interaction strength. 

In all these applications, the clarity and rigor of the algebraic approach contribute to more robust, 

interpretable, and optimized models. 

Conclusion 

The final section summarizes the contributions, addresses limitations, and outlines future 

directions for research in algebraic fuzzy graph theory. 

Summary of Contributions 

 Algebraic Framework Development: We introduced a comprehensive algebraic 

framework for fuzzy graphs, defining operations such as fuzzy union (⊕), fuzzy 

intersection (⊗), and fuzzy complement in a rigorous manner. These operators satisfy 

desirable properties like closure, associativity, commutativity, distributivity, and 

idempotence, forming an idempotent semiring or lattice-like structure. 

 Theoretical Extensions: The study extended classical graph theoretic concepts 

(homomorphisms, isomorphisms, structural invariants) to the fuzzy domain. Detailed 

proofs were provided for the existence of isomorphism classes and bounds on fuzzy 
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degree sequences and connectivity indices. 

 Illustrative Examples: A variety of examples, ranging from elementary two- and three-

vertex fuzzy graphs to more complex cases (bipartite and multi-level membership 

graphs), were presented with step-by-step computations and visualizations using Python 

and NetworkX. Comparisons with classical crisp graphs highlighted how fuzzy 

operations generalize traditional graph operators. 

 Potential Applications: We discussed how the framework can be extended to other 

fuzzy structures (e.g., intuitionistic and interval-valued fuzzy graphs) and its implications 

for algorithm design, computational efficiency, and real-world applications in network 

analysis, decision making, image processing, and bioinformatics. 

Limitations and Future Directions 

Membership Function Restrictions: The current framework primarily considers membership 

values in [0,1] and standard operations (max, min, 1 − x). Alternative t-norms and t-conorms 

could be explored to model different types of uncertainty, but this may require reworking some 

of the proofs and properties. 

 Computational Complexity: Although many operations are parallelizable, fuzzy graph 

algorithms can become computationally intensive, especially when extended to large-

scale networks or more complex structures such as interval-valued or multi-attribute 

fuzzy graphs. 

 Empirical Validation: While the algebraic properties have been rigorously established, 

extensive empirical studies are necessary to validate the framework’s utility across 

diverse real-world datasets. Comparative studies with other approaches in fuzzy graph 

theory would be beneficial. 

 Open Problems: There remain open questions regarding the optimal selection of 

membership aggregation functions, robustness under noisy data, and the development of 

efficient approximation algorithms for NP-hard fuzzy graph problems. 

Future research could focus on addressing these limitations, extending the algebraic framework 

to dynamic fuzzy graphs (where memberships change over time), and integrating probabilistic 

models with fuzzy memberships. 

Final Remarks 

This study has established a comprehensive algebraic framework that rigorously extends classical 

graph theory to the fuzzy domain. By defining fuzzy graph operators with strong mathematical 

foundations and demonstrating their consistency and applicability through detailed examples and 

visualizations, we offer a robust toolset for both theoreticians and practitioners. The framework 

not only preserves the intuitions of crisp graph theory as a special case but also provides enhanced 

analytical power to model uncertainty and partial relationships in complex networks. Ultimately, 

this work paves the way for further exploration in fuzzy graph theory, promising deeper 

theoretical insights and practical applications in areas as diverse as network analysis, decision 

support, and beyond. 
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