
 

 

 2025 
Volume: 5, No: 6, pp. 1416–1430  

ISSN: 2634-3576 (Print) | ISSN 2634-3584 (Online) 

posthumanism.co.uk  
 
DOI: https://doi.org/10.63332/joph.v5i6.2207   

Optimization of Conditions to Produce Biogas Methane from Dog Feces 

by Anaerobic Digestion: Systematic Re-view and Technological 

Perspectives 

Angelica Geovanna Zea Cobos1, Marco Amaya Pinos2, Luis Alfredo Calle3, Jordi Castel 

Tapia4, Margarita Martinez5, Pablo Caballero6 

 
Abstract 

Sustainable organic waste management has spurred research on methane bi-ogas production from various sources, including animal 
fecal waste. This study presents a systematic review on the anaerobic digestion of dog feces with the aim of optimizing conditions 
for methane biogas production. Scien-tific databases such as ScienceDirect, Springer, MDPI and ResearchGate were analyzed, 
selecting a total of 38 studies under the PRISMA methodolo-gy. The results indicate that methane production efficiency is influenced 
by organic matter composition, temperature, pH and microbial synergy in an-aerobic fermentation. It is concluded that optimization 
of parameters such as carbon/nitrogen (C/N) ratio and implementation of advanced anaerobic di-gestion technologies can 
significantly increase biogas production from these wastes. This study contributes to innovation in health and welfare technolo-gies 
by offering a sustainable solution for animal waste management, reduc-ing pollution and improving environmental quality. In 
addition, it contrib-utes to the thematic axis of sustainability and environment by demonstrat-ing how organic waste, such as dog 
feces, can be harnessed as a renewable energy source, promoting the transition to a greener and healthier future. 

Keywords: Biogas Methane, Dog Feces, Anaerobic Digestion, Condition Optimization, Bio-Reactor, Health and Welfare, 

Renewable Energy. 

 

Introduction 

The conversion of organic waste into methane biogas through anaerobic digestion is an 
established practice for generating renewable energy and reducing the environmental impact of 
organic waste [1]. Although the use of animal manure as a source of biogas has been extensively 
studied, the utilization of dog feces remains an underexplored area despite its high content of 
organic matter susceptible to anaerobic degradation [2]. Dog feces contain a combination of 
proteins, carbohydrates, and fats that can be easily broken down in an anaerobic environment, 
releasing methane through the activity of methanogenic microorganisms [3]. However, the 
efficiency of the anaerobic digestion process depends on several factors, such as the carbon-to-
nitrogen (C/N) ratio, temperature, and pH of the system [4]. Recent studies have shown that 
optimizing these parameters can significantly improve methane production [5]. This study aims 
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to conduct a systematic review on the anaerobic digestion of dog feces, evaluating the optimal 
conditions that favor methane biogas production. For this purpose, scientific databases such as 
ScienceDirect, Springer, MDPI, and ResearchGate were analyzed, selecting 38 relevant studies 
using the PRISMA methodology. Emerging technologies, such as the design of advanced 
bioreactors, are highlighted as potential solutions to improve methane yields and make the 
implementation of this process feasible on a larger scale [6]. Furthermore, this study seeks to 
integrate scientific findings into the creation of sustainable and affordable systems for animal 
waste management, considering their potential application in urban and rural areas. Research in 
this area not only contributes to the generation of renewable energy but also offers a viable 
alternative for reducing the environmental impact associated with the improper disposal of 
canine excrement [7]. 

Methodology 

Systematic Review on Anaerobic Digestion of Dog Feces for Biogas Production 

For systematic review, a comprehensive search was conducted in academic databases such as 
PubMed, Scopus, Web of Science and Google Scholar. The search terms used included: “dog 
feces biogas”, “anaerobic digestion dog waste”, “methane production dog waste”, and 
“bioreactor optimization dog feces”. Articles published in the last ten years that reported 
experimental data on anaerobic digestion of dog feces and its potential for biogas production 
were selected. 

The selected articles were reviewed in detail to identify key variables affecting methane biogas 
production. Studies that provided quantitative data on anaerobic digestion operating conditions 
and methane yields were included in the review. In total, 100 references relevant to addressing 
conditions for optimizing anaerobic digestion of dog feces were included [8,9]. 

Review of Scientific Articles in Academic Databases 

Databases such as Google Scholar, Scopus, Web of Science and PubMed were used to obtain 
recent scientific articles on anaerobic digestion and biogas production from organic waste, 
including dog feces waste. The search included terms such as “anaerobic digestion,” “biogas 
methane,” “animal waste,” “dog feces,” “optimal biogas production conditions,” among 
others.The articles selected were from the last 10 years to ensure the relevance and accuracy of 
the data [10,11]. 

Experimental Studies and Research Projects. 

Experimental studies published in peer-reviewed journals, such as Renewable Energy, Waste 
Management, Bioresource Technology, and Environmental Technology, were consulted.These 
studies provided data on temperature, pH, organic loading, and co-digestion conditions affecting 
methane production in anaerobic digestion processes [12,13] 

Review of Technical Reports and Theses. 

Theses and dissertations available in university repositories on biogas process optimization, 
particularly from animal waste with an emphasis on fecal matter, were consulted [14]. A 
systematic review following PRISMA methodology [15] was conducted, applying inclusion 
criteria such as publications from 2015 to 2025, experimental studies on anaerobic digestion of 
fecal waste, biogas production, and optimization, and articles in English or Spanish from indexed 
journals. Exclusion criteria included studies without quantifiable experimental data, reviews 



1418 Optimization of Conditions to Produce Biogas Methane from 

Journal of Posthumanism 

 

 

without explicit methodology, and non-English/Spanish studies. Scientific databases such as 
ScienceDirect, SpringerLink, ResearchGate, MDPI, and Frontiers in Environmental Science 
were used to ensure quality and timeliness. After applying eligibility criteria, 38 relevant studies 
were selected and evaluated using Mendeley and Zotero to minimize bias [16]. Data extraction 
focused on organic matter composition (carbon, nitrogen, carbohydrates, lipids, proteins) [17], 
environmental factors (temperature, pH, retention time, C/N ratio) [18], and biogas production 
(methane yield in mL CH₄/g SV) [19,20]. The Cochrane RevMan 5.4 tool was used for statistical 
analysis, ensuring the meta-analysis' validity. 

Data Extraction. 

For the analysis of the selected studies, the following key parameters were extracted: 

- Organic matter composition: carbon, nitrogen, carbohydrate, lipid and protein content [17]. 

- Environmental factors: Temperature, pH, retention time and C/N ratio[18]. 

- Biogas production: methane yield (mL CH₄/g SV) [19,20]. 

Cochrane RevMan 5.4 tool was used for data extraction and analysis, ensuring the statistical 
validity of the meta-analysis. 

Results 

Temperature 

Temperature plays a crucial role in microbial activity during anaerobic digestion. Most of the 
studies reviewed indicate that mesophilic (30-40°C) and thermophilic (50-60°C) digestion are 
the most effective for methane production. Under thermophilic conditions, a higher rate of 
biogas production is observed due to higher activity of methanogenic bacteria [17,18]. 

As seen in Table 1, the results indicate that thermophilic digestion generates 60-100% more 
methane than mesophilic digestion, but with higher energy costs. Psychrophilic digestion has 
significantly lower yields. 

pH 

The optimum pH for anaerobic digestion of dog feces is between 6.5 and 7.5. Outside this range, 
microbial activity is inhibited, which decreases methane production. Alkalinization of the 
medium through additives such as lime or ash has been reported as an effective strategy to 
maintain pH within the appropriate range [21]. 

Table 1 shows that maximum production occurs between pH 6.5 and 7.5, while values outside 
this range affect methanogenic activity. 

Organic load 

The adjustment of the organic load directly influences biogas production. Excessive loading can 
lead to the accumulation of volatile acids, inhibiting methane production. However, moderate 
loadings have been shown to be effective, achieving a balance between the process of 
acidogenesis and methanogenesis [22]. Table 1 shows that the higher the organic load, the higher 
the methane production, but with the risk of microbial inhibition. 

Additives and Combined Substrates 

The use of additives, such as manure from other animals or food waste, has been shown to 
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improve the efficiency of anaerobic digestion. These additives provide additional nutrients and 
balance the carbon to nitrogen ratio, which favors microbial activity and increases methane 
production [23]. 

Bioreactors 

Advanced bioreactor design is essential to improve process efficiency. Bioreactors with 
temperature control and recirculation systems have shown better results as shown in Table 1, as 
they allow more precise control of operating conditions [24]. The integration of technologies 
such as continuous agitation and real-time monitoring of operating conditions also improves 
process efficiency. 

 

Bioreactor 

Type / Factor 
Operating Temperature (°C) 

Methane 

Production 

(mL/gVS/day) 

Continuous 
Stirred Tank 
Bioreactor 

30-40 200-300 

Fixed Bed 
Bioreactor 

50-60 350-500 

Recirculation 
Bioreactor 

35-45 300-400 

Temperature 
(Mesophilic) 

30-40 150-250 

Temperature 
(Thermophilic) 

50-60 300-500 

Temperature 
(Psychrophilic) 

20-30 50-100 

pH Range 6.0 - 6.5 100-200 

pH Range 6.5 - 7.5 250-350 

pH Range 7.5 - 8.0 150-200 

Organic Load 0.5 - 1.0 gVS/L/day 100-200 

Organic Load 1.0 - 2.0 gVS/L/day 200-300 

Organic Load 3.0 - 4.0 gVS/L/day 350-500 

Additive: Cow 
Manure (20%-
50%) 

- 300-400 

Additive: Food 
Waste (10%-
30%) 

- 250-350 

Table 1. Table 1. Consolidated Bioreactor and Methane Production Data 

Results of the Statistical Analysis 

The results of the meta-analysis are presented in detailed tables, including mean values, standard 
deviations, and heterogeneity estimates. 



1420 Optimization of Conditions to Produce Biogas Methane from 

Journal of Posthumanism 

 

 

 

Variable Number of Studies I² (%) 

Temperature 25 62 

pH 20 48 

C/N Ratio 18 70 

Organic Load 15 55 

Table 2. Measure of Heterogeneity (I²) in the Analyzed Studies 

(Source : Higgins et al., 2003 ; Zhang et al., 2018) 

 

Variable Coefficient (β) 95% CI 

Temperature 0.65 0.45-0.85 

pH 0.52 0.33-0.71 

C/N Ratio 0.78 0.62-0.94 

Organic Load 0.49 0.28-0.70 

Table 3. Meta-Analytical Regression: Influence of Environmental Factors on Biogas Production 

(Source : Borenstein et al., 2009 ; Ghosh et al., 2020) 

 

Variable Egger's Statistic p-Value 

Temperature 1.45 0.08 

pH 0.92 0.12 

C/N Ratio 2.15 0.02 

Organic Load 1.78 0.04 

Table 4. Egger's Test for Publication Bias 

In the Table 5 presents the total number of studies identified in each database before applying 
inclusion and exclusion criteria. The removal of duplicate studies refines the search and ensures 
that repeated studies are not included in the analysis. Out of the 660 initially identified studies, 
only 560 were unique after removing duplicates. This process reduces redundancy and improves 
the accuracy of the analysis 

 

Data Source 
Identified 

Studies 

Duplicate 

Studies 

Studies After 

Filtering 

ScienceDirect 180 30 150 

SpringerLink 160 25 135 

ResearchGate 100 15 85 

MDPI 130 20 110 

Frontiers in Environmental 
Science 

90 10 80 

Total 660 100 560 
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Table 5. Initial Study Selection by Data Source 

In the Table 6 shows the progressive elimination of studies according to the established inclusion 
and exclusion criteria. The reduction in studies at each stage highlights the impact of applied 
filters to ensure that only relevant and high-quality studies are considered. Of the 560 reviewed 
studies, only 38 met all eligibility criteria, indicating a high exclusion rate based on scientific 
relevance and methodological quality. 

 

Applied Criteria Remaining Studies 

After removing duplicate studies 560 

Studies without experimental data 400 

Reviews without explicit methodology 300 

Studies in languages other than English and Spanish 250 

Studies irrelevant to the topic 150 

Total Selected Studies 38 

Table 6. Relevance Assessment Based on Inclusion and Exclusion Criteria 

In the Table 7 presents the mean values and standard deviations of key parameters analyzed in 
the selected studies. The mean and standard deviation provide information about the distribution 
and variability of environmental parameters and biogas production among the studies. It is 
observed that temperature and C/N ratio exhibit considerable variability, suggesting that these 
factors may significantly impact methane production. 

 

Parameter Number of Studies   Mean Standard Deviation 

Carbon Content (%) 38 55.8 5.0 

Nitrogen Content (%) 38 4.2 0.7 

C/N Ratio 38 24.8 2.9 

Temperature (°C) 38 41.2 7.4 

pH 38 6.9 0.4 

Methane Production (mL   CH₄/g VS) 38 325 40 

Table 7: Extracted Parameters from Selected Studies 

The table 8 summarizes the statistical models used to assess heterogeneity and reliability of 
results. The inclusion of random-effects models and heterogeneity tests ensures that 
methodological differences between studies are considered, reducing the impact of bias. Egger's 
test indicates possible publication bias, while meta-analytical regression evaluates the impact of 
key variables such as temperature and C/N ratio. 

 

Statistical Model Application 
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Heterogeneity Measure (I²) Quantification of variability among studies 

Random-Effects Model Consideration of methodological differences 

Egger's Test Evaluation of publication bias 

Meta-Analytical Regression Determination of key variable impacts 

Table 8: Statistical Models Applied in the Meta-Analysis 

The Table 9 presents the final selected studies, along with the key variables evaluated in each. 
The comparison of values across studies helps identify trends and patterns in methane production 
based on environmental parameters. It is observed that the optimal temperature for methane 
production ranges between 35-55°C, and the ideal C/N ratio is between 24:1 and 30:1. This 
provides a clear view of the most relevant studies and their impact on biogas production, 
facilitating the extraction of robust and applicable conclusions for optimizing the anaerobic 
digestion process. 

 

Author(

s) 

Yea

r 

Article 

Title 
Database 

Temperatu

re (°C) 
pH 

C/N 

Rati

o 

Organic 

Load 

(gVS/L/da

y) 

Methane 

Producti

on (mL 

CH₄/g 

VS) 

Ghosh et 
al. 

202
0 

Methane 
production 
from 
animal 
waste: 
Optimizati
on of 
anaerobic 
digestion 
process 

Energy & 
Fuels 

35-55 

 
6.5
-    
 
7.5 

25:1 2.5-3.5 
300- 
450 

Wu et al. 
201
9 

Optimizati
on of 
organic 
loading rate 
in 
anaerobic 
digestion of 
dog waste 

Environment
al Science & 
Technology 

30-50 
6.2
-
7.8 

22:1 1.8-3.0 
250- 
400 

Zhang et 
al. 

201
8 

Thermophil
ic 
anaerobic 

Biodegradati
on 

50-60 
6.8
-
7.2 

30:1 3.0-4.0 
350-  
500 
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digestion 
for biogas 
production 
from dog 
feces 

Kumar 
et al. 

202
0 

Advances 
in 
bioreactor 
technologie
s for 
methane 
production 
from 
organic 
waste 

Renewable 
Energy 

37-52 
6.0
-
7.5 

28:1 2.0-3.2 
270- 
420 

Table 9: Selected Scientific Articles for Meta-Analysis 

Conclusions 

Optimizing the anaerobic digestion conditions of dog feces is crucial to maximizing methane 
biogas production. Ideal conditions include mesophilic or thermophilic temperatures, a 
controlled pH between 6.5 and 7.5, and a moderate organic load. The addition of substrates such 
as manure and food waste can significantly improve digestion efficiency. 

The design of bioreactors with temperature control and recirculation systems is essential for 
optimizing the process. Technological advancements in bioreactor construction that efficiently 
manage anaerobic conditions open new opportunities for using dog feces in biogas production, 
contributing to sustainable waste management and renewable energy generation. 

Factors such as the C/N ratio, temperature, pH, and microbial activity must be carefully adjusted 
to maximize energy yield. The implementation of pretreatment techniques is recommended to 
reduce ammonia generation and improve the biodegradability of organic matter. Additionally, 
the meta-analysis conducted helps identify patterns and variations in process efficiency across 
different studies, providing a quantitative basis for future research. 

The use of interspecies electron transfer (IET) has been shown to improve the efficiency of 
waste-to-biogas conversion, reducing retention times and increasing process stability (IET 
Review, 2023). 

Egger's test revealed publication bias in studies on the C/N ratio and organic load, which may 
influence the interpretation of results. 

The obtained results indicate that temperature and the C/N ratio are the most influential factors 
in methane biogas production. Moderate heterogeneity was observed in the studies analyzed, 
suggesting significant methodological differences among the investigations. 
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