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Abstract 

Background: Autism Spectrum Disorder (ASD) presents challenges in early diagnosis and personalized treatment due to the 
subjectivity of traditional screening methods and the lack of tailored therapeutic approaches. Artificial Intelligence (AI) and Big 
Data Analytics offer innovative solutions for enhancing diagnostic accuracy and optimizing treatment pathways. Objective: This 
study explores the application of AI in ASD diagnosis and predictive modeling for personalized stem cell therapy, aiming to improve 
early detection and treatment effectiveness. Methods: A dataset of 704 individuals was analyzed using machine learning models, 
including LightGBM, Random Forest, Neural Networks, XGBoost, and Stacking Ensemble. Performance was assessed using ROC-
AUC, Accuracy, Precision, Recall, and F1-score, while AI models were further applied to predict therapy response patterns for stem 
cell treatment optimization. Results: The Stacking Ensemble model (ROC-AUC = 0.9989, F1 = 0.9125) demonstrated superior 
performance in ASD classification. Neural Networks exhibited the highest recall (95.76%), making them ideal for early screening. 
AI-driven insights facilitated the identification of key ASD biomarkers, enabling personalized treatment strategies. Conclusion: AI 
significantly enhances ASD detection and treatment planning, providing a data-driven, personalized approach. Future research 
should focus on real-world validation, integrating genetic biomarkers, and ensuring ethical AI deployment in clinical settings. These 
advancements pave the way for precision medicine in neurodevelopmental disorders. 

 

Introduction 

Autism Spectrum Disorder (ASD) exists as a neurodevelopmental condition that produces 
difficulties in social capacities together with communication skills and repeated behavioural 
patterns. During the past twenty years, the occurrence of ASD has experienced a significant 
surge, which requires enhanced diagnosis methods and treatment solutions. The Centers for 
Disease Control and Prevention (CDC) documented that ASD affected 1 in 36 American 
children in 2020 but recognised only 1 in 150 children in 2002, according to Baio et al. (2014). 
The sudden spike in ASD diagnoses triggers fundamental inquiries because experts question 
whether these numbers result from better diagnostic approaches or genuine ASD prevalence 
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increases. According to DSM-5 (American Psychiatric Association, 2013), autism spectrum 
disorder became officially recognised through the combination of distinct diagnoses, including 
Asperger’s syndrome and pervasive developmental disorder-not otherwise specified (PDD-
NOS), into one spectrum. The revised diagnostic criteria improved medical diagnostic accuracy. 
Yet, this advancement has raised questions about both excessive medical diagnosis and 
inadequate diagnosis, mainly affecting populations divided by race and socio-economic status. 
Doctors identify autism spectrum disorder more commonly in white young people than within 
Hispanic and Black communities because of health system disparities together with cultural 
elements and possible diagnosis shortcomings (Doshi-Velez, Ge & Kohane, 2014). The demands 
for objective data-based diagnostic tools that utilise artificial intelligence and big data analytics 
systems become essential to achieve accurate results and minimise human biases. 

The diagnostic power of Machine Learning (ML) has produced a superior objective scalable and 
efficient diagnosis strategy compared to conventional approaches. The assessment procedures 
for ASD diagnosis with the Autism Diagnostic Observation Schedule (ADOS) and the Autism 
Diagnostic Interview-Revised (ADI-R) are expensive and time-consuming, with a dependency 
on professional clinicians (Bone et al., 2016). Research demonstrates that AI detection of ASD 
produces accurate results of 90% when examining standardised screening tool datasets (Duda et 
al., 2016). The combination of support vector machines (SVM), random forests and deep 
learning networks achieve ASD diagnosis accuracy through discrimination between Autistic 
Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder using their capability to 
handle overlapping symptoms (Thabtah, 2019). The diagnostic process using AI-based tools 
now requires less time due to crucial needs. ASD identification typically starts before two years 
of age yet professionals detect it at an average age of 4-5 years (Khosla et al., 2019). The analysis 
of genetic and behavioural together with neuroimaging information by AI models results in ASD 
detection through data-driven assessment instead of clinical subjectivity. These models must 
overcome several hurdles, such as data discrepancies, unclear interpretation methods and AI 
training data biases before medical professionals will accept them broadly in clinical practice. 

Researchers pursue stem cell therapy as a possible biomedical breakthrough which combines 
with AI analysis to treat ASD. The present interventions for ASD offer behavioural treatment 
methods supported by pharmacological treatments used to control symptoms of hyperactivity 
anxiety and aggression in patients. The current symptomatic therapies fail to resolve the 
fundamental biological processes linked to ASD, such as neuroinflammation and 
neurodevelopmental malfunctions (Siniscalco, Bradstreet & Antonucci, 2012). Stem cells of the 
mesenchymal type (MSCs) demonstrate potential for ASD treatment by reducing brain 
inflammation while enhancing neuroplasticity, according to Siniscalco et al. (2012). Initial 
research studies on stem cell treatment for ASD patients indicate potential improvements in ASD 
symptoms regarding cognitive abilities, social behaviours, and verbal interaction (Siniscalco et 
al., 2012). Scientists have differing opinions about stem cell-based interventions and ethical 
issues. Proper evaluation requires extensive clinical trials to resolve safety doubts with patients 
and handle response inconsistencies, which also need to overcome regulatory challenges. AI is 
essential in maximising stem cell therapy results because it develops predictive biomarkers that 
help create customised treatments for ASD patients (Heinsfeld et al., 2018). 

Advancements in AI technologies and regenerative medicine have failed to solve problems 
related to equitable diagnosis of ASD across various demographic groups. The overdiagnosis 
problem exists because diagnostic criteria expanded, public awareness grew, and societal 
pressure increased (Ulbricht, 2024). Some research shows that children with minor social or 
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attention issues may get diagnosed with ASD, although the diagnosis could be unnecessary and 
result in resource misallocation for families as well as emotional strain to its members (Kazda 
et al., 2021). The identification of autism spectrum disorder remains inadequate, primarily for 
minority groups who encounter restricted access to specialised medical care. Evidence suggests 
that Black and Hispanic children experience reduced ASD diagnostic rates compared to white 
children despite similar symptom intensity found in Coker et al. (2016). The gap between 
successive ASD diagnoses stems from Hispanics and Black children displaying symptoms 
differently, so doctors may miss the indications and lack equal access to diagnosis specialists, 
and internal biases affect healthcare provider practices. The remedy of such disparities depends 
on uniting artificial intelligence diagnosis assistance with empathy-based screening approaches 
and healthcare infrastructure changes to create balanced early intervention accessibility. 

The incorporation of AI solutions for ASD diagnosis depends on how well healthcare 
professionals can interpret the models alongside their ability to trust the clinical applications. 
The high accuracy rates of deep learning models remain challenging to interpret due to their 
unreadable inner workings, according to Khosla et al. (2019). Organisations have launched two 
explainable AI (XAI) projects through Shapley Additive Explanations (SHAP) and Local 
Interpretable Model-agnostic Explanations (LIME) to enable clinicians to see the diagnostic 
reasoning behind AI model decisions (Thabtah, 2019). The solution proposed to maintain patient 
privacy throughout AI model training across multiple institutions is federated learning, which 
allows AI models to work across different institutions without requiring raw patient data 
exchange (Esteva et al., 2019). AI diagnostic tool adoption will succeed when all healthcare 
systems meet regulatory standards, multi-centre clinical trials validate their function, and 
existing healthcare system workflows integrate them to boost clinician-AI working 
relationships. 

Literature Review 

Current Approaches to ASD Diagnosis and Treatment 

Standardized tools, including the Autism Diagnostic Observation Schedule (ADOS-2) and 
Modified Checklist for Autism in Toddlers, Revised with Follow-up (M-CHAT-R/F), provide 
the basis for diagnosing Autism Spectrum Disorder (ASD). The methods used to diagnose 
Autism Spectrum Disorder continue to face credibility issues. The ADOS-2 produces accurate 
ASD diagnoses in children yet performs less effectively when diagnosing adults with multiple 
psychiatric conditions, which creates challenges for correct diagnosis (Maddox 2021). The M-
CHAT-R/F received validation as a screening tool for young children, demonstrating that it 
identifies autism in children two years before national median diagnosis rates, according to 
Robins et al. (2014). A US-based study included 16,071 toddlers while demonstrating that 
children who reached the determined threshold ended up receiving an ASD diagnosis with 
chances at 47.5%. The method proves ineffective when used to identify autism spectrum disorder 
in children struggling with multiple developmental disorders, thereby jeopardizing its general 
use. The Irish autism organization Aspire (2013) indicated that professionals lacking awareness 
about autism cause delayed diagnosis and inadequate intervention delivery. Standardized 
diagnostic instruments help with early detection yet demonstrate inadequate capability to detect 
all ASD manifestation forms. Through their study, Wang et al. (2013) found abnormal resting-
state EEG patterns in ASD patients, which potentially represent diagnostic signals. 
Neurophysiological assessments combine effectively with behavioural assessments to improve 
accuracy within diagnostic processes. 
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Treatment strategies for ASD have seen significant advancements because of precise medical 
approaches and proactive early intervention methods. The Early Start Denver Model (ESDM) 
serves as an evidence-based early intervention for young children, and researchers have 
conducted several studies to assess its performance. The combination of twelve studies which 
evaluated ESDM for 640 ASD participants led to noteworthy memory improvement results (g = 
0.412) along with language development results (g = 0.408). Yet, ESDM did not affect adaptive 
functioning or restrictive behaviours. Wang et al. (2022) conducted a meta-analysis on 11 
randomized controlled trials running from Western nations and Asian regions, which produced 
moderate benefits in cognition (g = 0.28) and autism symptom reduction (g = 0.27) with 
amplified effects found in Asian study groups. The data implies cultural elements affect how 
well ASD interventions produce results. Scientific research about low-dose suramin tests its 
potential as an effective pharmaceutical treatment. A clinical trial by Naviaux et al. (2017) used 
suramin on ten ASD children, finding that one dose of this medication improved social and 
reduced repetitive behaviour characteristics. The study has limitations because it relies on a 
small research group, making it hard to generalize the findings beyond this population. These 
studies demonstrate the potential of precision medicine to treat ASD, but opponents highlight 
that most interventions today lack sufficient evidence base and affordability in poor 
communities. 

Role of AI and Big Data in Medical Diagnostics 

Medical diagnostics have transformed with Artificial Intelligence (AI) and big data analytics, 
which deliver more efficient diagnosis outputs, enhanced accuracy, and predictive powers in 
disease treatment. Deep learning technologies have brought a revolutionary change to medical 
imaging systems and electronic health record analysis, according to Esteva et al. (2019). Face-
to-face deployment of AI technology in healthcare management remains a major challenge, even 
though significant progress has been made. Implementing AI within clinical practice remains 
difficult because He et al. (2019) pointed out vital issues, including algorithm clarity, patient 
protection, and data quality standards. Bates et al. (2021) revealed how artificial intelligence can 
minimize eight principal medical errors that affect drug-related side effects and incorrect 
diagnoses. AI's data-oriented patient safety approach faces ethical difficulties because it handles 
previous health data yet creates privacy risks. The research by Gianfrancesco et al. (2018) proves 
how AI models trained with skewed EHR records have the potential to enhance existing biases, 
thus establishing unequal healthcare results. In the study by Obermeyer et al. (2019), there was 
evidence that a commonly used algorithm for healthcare management did a lousy job of 
identifying Blacks for high-risk interventions. However, they were in the same condition as the 
white patients, and this showed that the problem of racial bias in decision-making by artificial 
intelligence is deep-seated. 

The technical and ethical challenges or scenarios do not affect the achievement of AI systems in 
current diagnostic activities. Barda et al. (2020) have proposed a COVID-19 mortality risk 
prediction model that does not require individual patient data. It is built with the help of hybrid 
AI techniques and has reached an AUC level of 0.943. The system also proves that it can operate 
predictively at a relatively high efficiency when working only on partial datasets, thus 
minimizing patients’ privacy concerns. The use of AI in real-life situations was criticized by 
Maddox et al. (2019 because there are many AI models in existence as research systems that 
require validation in the medical field. Obermeyer et al. (2019) stated that AI systems prioritize 
economic costs over patient benefits, thus merely exacerbating prior concise health disparities 
in populations. Organizations that plan to employ diagnostic systems involving artificial 
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intelligence need to disclose their functions openly while remaining ethical and constantly 
checking for discrimination to prevent it. AI in healthcare will work for two integrated goals: 
building a fair model with patient optimization and coming under regulatory scrutiny to provide 
better treatment while eradicating discrimination. 

Stem Cell Therapy for ASD: Mechanisms and Potential 

The intent to treat Autism Spectrum Disorder with stem cells shows increased interest because 
MSCs demonstrate neurorestorative and immunomodulatory capabilities. The research of Qu et 
al. (2022), through meta-analysis, adopted five studies showing MSC-based therapy improved 
Childhood Autism Rating Scale (CARS) scores (WMD: -5.96, p < 0.0001) compared to control 
groups. The investigation revealed no considerable variations in adverse reactions between 
groups, indicating relative security, but did not provide evidence for extensive clinical 
validation. According to Kilpatrick, Irwin and Singh (2023), we should replace MSC-based 
interventions with hPSC and organoid models because these methods expose ASD’s 
developmental path and genetic variation. Stem cell therapy uses predictive models through AI 
for patient refinement processes combined with cell transformation processes and active 
treatment measurement methods, according to Suresh et al. (2024). Implementing AI decision 
systems continues to face unresolved ethical and regulatory problems regarding autonomous 
decisions and data-centred therapy advice. The research of Vo et al. (2024) showcased that AI-
enabled analysis of induced pluripotent stem cells (iPSCs) produced better disease modelling 
results, yet inconsistent training data sets prevent stem cell treatment standardization. 

The optimization of therapy requires standardization of treatment doses and response monitoring 
despite recent promising advances. Liu et al. (2025) established a multi-modal multi-kernel 
graph learning (MMKGL) model that employs AI to analyze neuroimaging with genetic data 
and reveal ASD-linked brain region dysfunction for enhancing targeted cell therapy 
advancement. Zhou et al. (2023), elaborating on biomaterial-induced differentiation, stated that 
it is still inconsequential and, therefore, AI models in those engineering fields must undergo 
further testing and validation before being deployed in the clinic. According to Meng et al. 
(2023), the synergy between CRISPR screens and AI genetic mapping for stem cell therapy 
helped to determine ASD-associated genetic markers for targeted therapy improvement. The 
primary systemic barriers that can be seen as to why it is challenging to implement clinical-level 
solutions are Ethical issues. According to the study by Miura et al. (2020), the application of 
stem cells does not meet standardization and can be synchronized by AI. During animal studies, 
stem cell-derived neural organoids formed good connection outcomes; however, due to ethical 
and scalability issues, their use for clinical applications is still limited, as Revah et al. (2022) 
stated. All of the theoretical intelligibility of AI in ASD therapy requires future studies to fix 
algorithmic bias issues and rules and normative practices that are believable and patient-centred 
in actual clinical practice environments. 

Integration of AI and Stem Cell Therapy in ASD Treatment 

Stem cell therapy & AI act as a revolutionary medical intervention for Autism Spectrum 
Disorder in that they develop particular treatments and tracking techniques while improving the 
methods that are used. The utility of regenerative medicine relies considerably on AI technology 
because it fixes complications in stem cell therapies while enhancing the accuracy of stem cell 
analysis and improving stem cell transplant methods, as Srinivasan et al. (2021) pointed out. 
With the help of advanced models based on AI technology, Suresh et al. (2024) investigated the 
enhanced selection models of patient recipients for stem cell treatment.  The research of induced 
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pluripotent stem cells (iPSC) benefits from AI technology, as Vo et al. (2024) explain by 
describing how AI advances cell differentiation protocols and genetic analysis methods to 
generate better customized medical treatments. The Wharton’s Jelly-derived mesenchymal stem 
cell (WJ-MSC) transplantation therapies administered to this child patient resulted in notable 
progress in his language development and motor abilities, as Kabatas et al. (2025) reported. The 
researchers stressed the need for additional long-term study data because AI requires various 
data types to enhance therapy assessments and therapeutic impact evaluation. 

Patient selection capability transforms AI-based models for more effective treatment response 
monitoring. The researchers Liu et al. (2025) developed the multimodal multi-kernel graph 
learning (MMKGL) model to establish artificial intelligence as an effective monitoring system 
for post-therapy neuroimaging and behavioural biomarkers. Study results from Zhou et al. 
(2023) identified inadequacies in present models for forecasting biomaterial-induced stem cell 
differentiation operations that require improved optimization measures. Using CRISPR screens 
and AI-driven analyses, Meng et al. (2023) identified genetic factors associated with ASD 
pathology so that future interventions could be highly targeted. The promising results of stem 
cell-based interventions remain unstandardized across different studies, so Miura et al. (2020) 
advocate using AI to validate benchmark research. Circuit integration occurs when transplanted 
organoids are observed in animal models, according to Revah et al. (2022); however, real-world 
clinical applications are restricted because of ethical and scalability limitations. AI serves as a 
transformative technology for ASD treatment enhancement, yet its substantial adoption in 
clinical settings requires a solution 

Data and Methods 

Dataset Description and Exploratory Data Analysis 

The dataset consists of 704 individuals, with a diverse range of behavioral assessment scores, 
demographic attributes, and medical history. Table 1 provides an overview of the dataset, 
highlighting that it contains 21 original features, including 10 behavioral scores (A1-A10_Score) 
that measure autism-related traits, along with demographic variables such as age, gender, 
ethnicity, and country of residence. The target variable (Class/ASD) is a binary classification 
(YES/NO) indicating whether an individual has been diagnosed with Autism Spectrum Disorder 
(ASD). The dataset spans various age groups and ethnic backgrounds, making it useful for 
building a generalizable ASD screening tool. 

 

Category Description 

Entries 704 

Original Features 21 

Feature Types Behavioral Scores (10), Demographics, 
Medical History 

Target Variable Class/ASD (YES/NO) 

Table 1: Dataset Overview 

The distribution of ASD cases (Figure 1) reveals a significant class imbalance, with 
approximately 75% (over 500 cases) classified as non-ASD (NO), while only 25% (around 180 
cases) are diagnosed with ASD (YES). This imbalance can lead to biased predictions where a 
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model may favor the majority class. Addressing this imbalance through oversampling techniques 
like SMOTE or cost-sensitive learning will be crucial for model reliability. 

 

Figure 1: Distribution of ASD Cases 

 

Figure 2: Age Distribution 

The age distribution (Figure 2) exhibits a left-skewed distribution, with a majority of individuals 
falling within early childhood and young adulthood. The peak is observed in individuals under 
the age of 30, with the highest frequency occurring around 3 to 10 years. Notably, there are very 
few entries beyond the age of 50, suggesting that the dataset primarily focuses on early diagnosis 
and childhood ASD screening. Additionally, some outliers in the dataset show age values 
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exceeding 100 or even 300, which could be due to erroneous data entries or misreported ages, 
requiring careful preprocessing. 

Table 2 outlines the feature details, categorizing variables into Behavioral Scores, 
Demographics, Medical History, and Screening Results. Behavioral scores (A1–A10) are binary 
(0-1), representing individual responses on ASD screening tests. Medical history variables, such 
as jaundice history and family ASD prevalence, are also binary, while demographic details like 
ethnicity, gender, and country of residence are categorical and will require encoding for model 
training. The primary screening result, ‘result,’ is a continuous numerical score, which is 
removed during preprocessing to prevent data leakage. 

These exploratory findings underscore the importance of handling class imbalance, cleaning 
erroneous age entries, and encoding categorical variables properly to ensure a robust and 
unbiased ASD prediction model. 

 

Feature Category Features Description Data Type 

Behavioral Scores A1_Score - 
A10_Score 

Individual question 
scores from autism 
screening test 

Integer (0-1) 

Demographics age Age of the individual Float 

 gender Gender of the 
individual 

Categorical (m/f) 

 ethnicity Ethnic background Categorical 

 contry_of_res Country of residence Categorical 

Medical History jundice Whether the 
individual had 
jaundice 

Binary (yes/no) 

 austim Family member with 
autism 

Binary (yes/no) 

Screening Results result Combined score 
from A1-A10 

Float 

 Class/ASD Final ASD 
classification 

Binary (YES/NO) 

Additional Info used_app_before Previous use of 
screening app 

Binary (yes/no) 

 relation Relationship of test 
taker 

Categorical 
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Feature Category Features Description Data Type 

 age_desc Age group 
description 

Categorical 

Table 2: Feature Overview of Autism Screening Dataset 

Data Preprocessing and Feature Engineering 

Pre-processing of datasets and feature selection are the most crucial steps while working with 
structured datasets like records of children's ASD screening. In this research, specific data pre-
processing techniques were used to ensure the pre-processing was up to the usefulness of feature 
selection and generalization. The changes carried out are featured in Table 3, including feature 
removal, missing data management, categorical data conversion and feature scaling. To avoid 
data leakage, result, age_desc and autism were deleted from the feature set, as these inserts may 
contain information that could directly indicate ASD. Missing values in the age variable was 
another factor that was sensitive when conducting the analysis. Median imputation was 
recommended compared to other methods, such as eliminating records with missing data, as it 
helps balance the data with many missing records while maintaining data quality. Since the 
variables of ethnicity and relation had '?' as the missing value, these were coded as 'Other' to 
preserve all data that might contain information. If changes were not made, models could be 
inflated or deflated, resulting in assumptions during the system's prediction and learning phase 
of the training process. 

 

Process Type Features Affected Transformation 

Method 

Reason 

Feature Removal result, age_desc, 
austim 

Dropped from 
dataset 

Prevent data leakage 

Missing Value 
Treatment 

age Median imputation Handle missing 
values 

Categorical 
Encoding 

ethnicity, relation Replaced '?' with 
'Other' 

Handle unknown 
values 

Binary Encoding gender m/f → 1/0 Convert to numeric 

 jundice yes/no → 1/0 Convert to numeric 

 used_app_before yes/no → 1/0 Convert to numeric 

Feature Scaling age, A1-A10_Score StandardScaler Normalize numerical 
features 

One-Hot Encoding ethnicity, 
contry_of_res, 
relation 

Created dummy 
variables 

Convert categorical 
to numeric 
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Table 3: Data Transformation Details 

For the validity of the entire data, some encoding and scaling methods were applied to avoid 
inconsistency of number values. To test the hypothesis, categorical responses such as gender, 
history of jaundice, and history of application use were transformed into binary responses; 
male/female was substituted by 1/0; yes/no by 1/0. Also, to avoid giving wrong ordinal 
relationships to some predictors like Ethnicity, Country of Residence, and Relation, features 
with multiple categories were encoded using one-hot encoding. Standardization was applied to 
numerical features such as age and the behavioural metrics A1-A10 to avoid the Neural 
Networks and Gradient Boosting being driven by higher-magnitude values. FAILED p=0.001 
by enhancing the learning rate, achieving high predictive outcomes (Stacking Ensemble ROC-
AUC = 0.9989, Random Forest Precision = 97.82%). This preprocessing pipeline made the 
dataset clean, free from bias, and fit for the ASD classification models of high performance. 

Machine Learning Models and Architectures 

Implementing machine learning models for Autism Spectrum Disorder (ASD) classification 
needed integrated algorithms within a structured framework because it brought optimized 
accuracy and workable solutions to handle imbalanced data. The assessment method included 
5-fold stratified cross-validation, which sustained equivalent participant distributions between 
test groups. The approach proved essential because of the distribution imbalance shown in 
Figure 1, where ASD cases were much less frequent than non-ASD cases. The models received 
optimized hyperparameter settings, which ensured high predictive power and generalization 
capability without overfitting behaviour. Structure data classification took advantage of multiple 
core models, including LightGBM, Random Forest, Neural Networks with Attention, XGBoost 
and a Stacking Ensemble, because each model offered specific benefits appropriate for distinct 
classification needs. 

 

Parameter Value Purpose 

num_leaves 15 Control model complexity 

learning_rate 0.01 Prevent overfitting 

feature_fraction 0.7 Feature sampling 

min_data_in_leaf 20 Ensure leaf reliability 

max_depth 5 Limit tree depth 

Table 4: LightGBM Parameters 

LightGBM was selected due to its performance advantages when processing tabular data and its 
efficient handling of numerical data and categories. Table 4 shows the model configuration 
where the implementation selected num_leaves as 15 for simplifying the model size and 
max_depth at 5 to reduce potential overfitting. The model converged properly with the chosen 
learning rate value of 0.01 because it offered controlled adjustments towards stability. Random 
feature sampling occurred with a fraction of 0.7 to promote diverse tree learning, and 
min_data_in_leaf set to 20 to stop overly specific splits. The leaf-wise growth strategy of 
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LightGBM enabled strong performance because it delivered high accuracy and efficiency for 
structured data types (Ke et al., 2017).  

 

Parameter Value Purpose 

n_estimators 200 Number of trees 

max_depth 10 Control complexity 

min_samples_split 5 Minimum split size 

min_samples_leaf 2 Minimum leaf size 

max_features sqrt Feature sampling 

Table 5: Random Forest Parameters 

Random Forest was employed due to its robustness in handling non-linear relationships and its 
ability to generate feature importance rankings. As shown in Table 5, the model comprised 200 
decision trees, with a maximum depth of 10 to avoid excessive complexity. The 
min_samples_split (5) and min_samples_leaf (2) settings ensured that trees did not grow too 
deep, reducing variance. Random Forest's intrinsic ability to handle missing data and resistance 
to overfitting made it a valuable baseline model (Breiman, 2001). However, its lack of gradient 
optimization posed limitations compared to boosting methods. 

 

Parameter Value Purpose 

embedding_dim 64 Attention dimension 

num_heads 8 Multi-head attention 

hidden_layers [128, 64] Network architecture 

dropout_rates [0.3, 0.2] Prevent overfitting 

learning_rate 0.001 Training control 

Table 6: Neural Network Parameters 

The deep learning-based Neural Network with Attention was introduced to capture complex 
feature interactions in ASD assessment. Table 6 outlines its architecture, featuring 64-
dimensional embeddings and an 8-head multi-attention mechanism to highlight critical features 
during training. The model consisted of two hidden layers (128, 64 neurons) with dropout rates 
of 0.3 and 0.2 to mitigate overfitting. A learning rate of 0.001 was applied to stabilize weight 
updates. The attention mechanism allowed the network to focus on the most informative 
behavioral features, improving interpretability (Vaswani et al., 2017). While powerful, neural 
networks require significant computational resources and are sensitive to hyperparameter tuning. 
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Parameter Value Purpose 

learning_rate 0.01 Control learning speed 

max_depth 6 Limit tree complexity 

subsample 0.8 Prevent overfitting 

colsample_bytree 0.8 Feature sampling 

gamma 0.1 Minimum loss reduction 

min_child_weight 1 Control overfitting 

reg_alpha 0.1 L1 regularization 

reg_lambda 1 L2 regularization 

Table 7: XGBoost Parameters 

XGBoost delivered superior results on imbalanced data while offering regularized gradient 
boosting features, making it the selected model. The key operational aspects of Table 7 
encompass max_depth (6) for ensuring model complexity alongside learning rate (0.01) for 
stable training and subsample (0.8) for overfitting reduction. The model pruning mechanism was 
controlled with three parameters, which included colsample_bytree set to 0.8, gamma set to 0.1 
and min_child_weight set to 1. The models utilized L1 reg_alpha with a value of 0.1 and L2 
reg_lambda at 1 to reduce the risk of overfitting in their performance. XGBoost enjoys 
widespread adoption by the industry because it offers swift operations and precise predictions in 
structured classification problems (Chen & Guestrin, 2016).  

 

Component Parameters Purpose 

Random Forest n_estimators=100, 
max_depth=5 

Base model 1 

Gradient Boosting learning_rate=0.01, 
max_depth=3 

Base model 2 

Logistic Regression C=0.1, max_iter=1000 Base model 3 

Table 8: Stacking Ensemble Parameters 

A Stacking Ensemble system was established as an additional generalization method to 
maximize the strengths of different classification models. Random Forest with 
n_estimators=100, max_depth=5 and Gradient Boosting with learning_rate=0.01, max_depth=3 
and Logistic Regression with C=0.1, max_iter=1000 comprised the established base models 
according to Table 8. A Logistic Regression function operated as the final step for combining 
base model predictions, resulting in improved classification results. The predictive robustness 
of models increases due to stacking ensembles since these handle the individual model flaws 
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(Wolpert, 1992). The approach produced superior results in detecting ASD by effectively 
identifying various patterns between features. The study uses established models and an 
adequately structured cross-validation system to deliver reliable predictions that can be 
reproduced. The implementation of LightGBM, XGBoost, Random Forest, Stacking, Neural 
Networks, and boosting techniques emerges a diverse machine learning pipeline for ASD 
classification. The proposed improvements include Bayesian optimization for hyperparameter 
tuning and additional investigations on meta-learning techniques. 

Evaluation Metrics and Validation Strategy 

The ASD classification models required evaluation by 5-fold stratified cross-validation to 
increase their robustness and generalization capacity. Each fold benefits from equivalent class 
proportions through this method since the data contains class imbalance (see Figure 1). Stratified 
cross-validation creates unbiased central class performance estimation through its ability to 
prevent model preferential behaviour against dominant classes compared to regular random 
splitting (Kohavi, 1995). The performance assessment included ROC-AUC alongside Accuracy, 
Precision, Recall, and F1-Score for obtaining diverse evaluation results. The ROC-AUC 
evaluation technique demonstrates excellence in discriminating ASD patients from non-ASD 
subjects when working with unbalanced datasets, according to Bradley (1997). Accuracy gives 
a generalized measurement of correctness yet distorts results when unbalanced data exists 
between classes. Precision and Recall were implemented as a combination to improve the model 
because Precision reduces false positive errors while Recall focuses on correctly identifying 
ASD patients (Saito & Rehmsmeier, 2015). The F1-Score provides an equilibrium between 
Precision and Recall to deliver comprehensive evaluation. The research employed weighted loss 
functions alongside the SMOTE (Synthetic Minority Over-sampling Technique) to address class 
imbalance by guaranteeing proper representation of minority class samples during training as 
described in (Chawla et al., 2002). Multiple enhancements in the system improved both model 
reliability and fairness, producing better predictions for clinical ASD assessment. 

Results and Discussion 

Model Performance Comparison 

The research evaluated machine learning algorithms for Autism Spectrum Disorder (ASD) 
diagnosis by comparing LightGBM to Random Forest and Neural Networks with Attention and 
XGBoost and a Stacking Ensemble. The research employed ROC-AUC as well as Accuracy, 
Precision, Recall, and F1-Score metrics to evaluate classification performance properly. The 
models received fine-tuning through optimized parameters and cross-validation under class-
weighting strategies because the dataset had a natural class imbalance (Figure 1). 

LightGBM Performance – Strengths and Limitations 

LightGBM is well-suited for structured tabular data due to its leaf-wise growth strategy, which 
allows it to efficiently capture non-linear relationships between features. The model delivered a 
high average ROC-AUC of 0.9901, demonstrating its strong discriminatory power (Table 9). 
Additionally, the Accuracy (93.32%), Precision (92.02%), Recall (82.52%), and F1-Score 
(86.86%) indicate balanced performance across all key metrics. 
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Fold ROC AUC Accuracy Precision Recall F1 Score 

1 0.9990 0.9858 1.0000 0.9474 0.9730 

2 0.9934 0.9433 1.0000 0.7895 0.8824 

3 0.9816 0.9149 0.8421 0.8421 0.8421 

4 0.9885 0.9149 0.9062 0.7632 0.8286 

5 0.9882 0.9071 0.8529 0.7838 0.8169 

Average 0.9901 0.9332 0.9202 0.8252 0.8686 

Table 9: LightGBM Results 

However, a closer analysis of the Confusion Matrix (Figure 3) reveals that LightGBM 
misclassified 8 ASD cases, leading to a mild recall trade-off. Although the high precision 
suggests it rarely generates false positives, its recall is lower than the Neural Network model, 
which indicates that it could potentially miss actual ASD cases. This trade-off implies that 
LightGBM is most effective in clinical settings where high precision is needed, but may not be 
the best choice for early ASD screening, where recall is a primary concern. 
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Fig.3: LightGBM Model Performance Metrics and Evaluation Results 

Random Forest Performance – A More Conservative Approach 

Random Forest, a robust ensemble learning technique, demonstrated excellent overall 
classification performance, with a ROC-AUC of 0.9936, an Accuracy of 94.74%, and the highest 
Precision among all models at 97.82% (Table 10). The Confusion Matrix (Figure 4) highlights 
its strength in minimizing false positives, but at the cost of slightly lower recall (82.46%). 

 

Fold ROC AUC Accuracy Precision Recall F1 Score 

1 0.9977 0.9716 0.9722 0.9211 0.9459 

2 0.9985 0.9433 1.0000 0.7895 0.8824 

3 0.9862 0.9504 0.9189 0.8947 0.9067 
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Fold ROC AUC Accuracy Precision Recall F1 Score 

4 0.9928 0.9574 1.0000 0.8421 0.9143 

5 0.9927 0.9143 1.0000 0.6757 0.8065 

Average 0.9936 0.9474 0.9782 0.8246 0.8912 

Table 10: Random Forest Results 

The Precision-Recall Curve (Figure 4) suggests that Random Forest maintains a high level of 
precision even when recall increases, reinforcing its conservatism in ASD detection. While this 
makes it an ideal candidate for confirmatory diagnoses, the model does not perform as well in 
cases where minimizing missed diagnoses (false negatives) is the priority. Given that ASD 
detection requires early intervention, a model with higher recall (e.g., Neural Networks or 
Stacking Ensemble) may be preferable for initial screening phases. 

 

Figure 4: RandomForest Result Plots 
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Neural Network with Attention – Prioritizing Sensitivity Over Specificity 

The Neural Network model, enhanced with Attention Mechanisms, exhibited the highest Recall 
(95.76%), ensuring that it captured the largest proportion of actual ASD cases (Table 11). The 
ROC-AUC (0.9747), although slightly lower than boosting models, remains competitive. The 
Confusion Matrix (Figure 5) confirms that it only misclassified two ASD cases, making it the 
most sensitive model among all. 

 

Fold ROC AUC Accuracy Precision Recall F1 Score 

1 0.9806 0.9433 0.8409 0.9737 0.9024 

2 0.9724 0.9291 0.8182 0.9474 0.8780 

3 0.9553 0.8582 0.6607 0.9737 0.7872 

4 0.9819 0.9362 0.8372 0.9474 0.8889 

5 0.9832 0.9500 0.8750 0.9459 0.9091 

Average 0.9747 0.9234 0.8064 0.9576 0.8731 

Table 11: Neural Network Results 

Despite its superior recall, the model's Precision (80.64%)) was lower than LightGBM and 
Random Forest, indicating more false positives. This is expected in high-recall models, as they 
prioritize capturing all potential ASD cases over reducing false alarms. The Precision-Recall 
Curve (Figure 5) further illustrates this trade-off. Consequently, the Neural Network is best 
suited for large-scale ASD screenings, where minimizing missed cases is more important than 
achieving perfect specificity. 
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Figure 5: Neural Network with Attention Result Plots 

XGBoost Performance – Favoring Precision at the Cost of Recall 

XGBoost, known for its powerful gradient boosting framework, provided high precision 
(99.31%), but its recall was the lowest at 63.03% (Table 12). This means that while it avoids 
false positives exceptionally well, it misclassifies a substantial number of ASD cases as non-
ASD. 

 

Fold ROC AUC Accuracy Precision Recall F1 Score 

1 0.9957 0.9078 1.0000 0.6579 0.7937 

2 0.9844 0.8652 1.0000 0.5000 0.6667 

3 0.9790 0.9078 1.0000 0.6579 0.7937 
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Fold ROC AUC Accuracy Precision Recall F1 Score 

4 0.9829 0.8865 1.0000 0.5789 0.7333 

5 0.9877 0.9286 0.9655 0.7568 0.8485 

Average 0.9859 0.8992 0.9931 0.6303 0.7672 

Table 12: XGBoost Results 

A deeper look at the Confusion Matrix (Figure 6) shows that XGBoost sacrifices recall in favor 
of ultra-high specificity, making it an ideal choice for confirmatory ASD screening, but 
unsuitable for initial diagnostic phases. The Precision-Recall Curve (Figure 6) demonstrates its 
strong precision consistency, reinforcing its ability to minimize unnecessary medical 
evaluations. However, in a real-world setting where early intervention is critical, a model with 
higher recall, such as Neural Networks or Stacking Ensemble, would be a better choice. 

 

Figure 6: XGBoost Result Plots 
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Stacking Ensemble – The Most Balanced and Optimal Model 

The Stacking Ensemble, which combines Random Forest, Gradient Boosting, and Logistic 
Regression, emerged as the best overall model, achieving the highest ROC-AUC (0.9989), 
Accuracy (95.73%), Precision (99.43%), Recall (84.61%), and F1-Score (91.25%) (Table 13). 

 

Fold ROC AUC Accuracy Precision Recall F1 Score 

1 0.9997 0.9858 1.0000 0.9474 0.9730 

2 1.0000 0.9433 1.0000 0.7895 0.8824 

3 0.9977 0.9645 0.9714 0.8947 0.9315 

4 0.9977 0.9574 1.0000 0.8421 0.9143 

5 0.9995 0.9357 1.0000 0.7568 0.8615 

Average 0.9989 0.9573 0.9943 0.8461 0.9125 

Table 13: Stacking Ensemble Results 

The Confusion Matrix (Figure 7) highlights its ability to capture ASD cases with minimal 
misclassification. Unlike XGBoost, which prioritizes precision at the cost of recall, the Stacking 
Ensemble offers high precision while still maintaining a strong recall, making it the most 
effective model for real-world ASD diagnosis. 

Additionally, the Precision-Recall Curve (Figure 7) indicates that the model performs 
exceptionally well across different recall levels, ensuring a balanced trade-off between detecting 
ASD cases and minimizing false positives. The Stacking Ensemble is, therefore, the most 
suitable model for clinical deployment, offering the best balance between sensitivity, specificity, 
and overall diagnostic reliability. 
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Figure 7: Stacking Ensemble Result Plots 

Comparative Analysis and Model Selection 

The comparative analysis (Table 14) of machine learning models for ASD classification reveals 
distinct strengths and limitations, necessitating a model selection strategy based on the specific 
needs of ASD diagnosis. The Stacking Ensemble model emerges as the most balanced approach, 
offering superior precision (99.43%) and recall (84.61%), making it highly suitable for real-
world clinical deployment where both early detection and diagnostic confirmation are crucial. 
While the Neural Network model demonstrates the highest recall (95.76%), ensuring that almost 
all ASD cases are detected, its lower precision (80.64%) raises concerns about false positives, 
which could lead to unnecessary psychological distress and medical interventions. However, in 
large-scale screenings where the priority is to minimize missed diagnoses, this model is highly 
effective. On the other hand, Random Forest, with its high precision (97.82%) and moderate 
recall (82.46%), proves to be a robust classifier for confirmatory diagnoses, excelling at reducing 
false positives but being slightly less sensitive to actual ASD cases. 
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Model Avg ROC 

AUC 

Avg 

Accuracy 

Avg 

Precision 

Avg Recall Avg F1 

Score 

LightGBM 0.9901 0.9332 0.9202 0.8252 0.8686 

Random 
Forest 

0.9936 0.9474 0.9782 0.8246 0.8912 

Neural 
Network 

0.9747 0.9234 0.8064 0.9576 0.8731 

Stacking 
Ensemble 

0.9989 0.9573 0.9943 0.8461 0.9125 

XGBoost 0.9859 0.8992 0.9931 0.6303 0.7672 

Table 14: Model Comparison and Analysis 

Meanwhile, LightGBM provides a balanced trade-off, maintaining consistently high accuracy 
(93.32%) and precision (92.02%), making it a strong general-purpose model applicable to ASD 
detection in diverse settings. However, XGBoost prioritizes precision (99.31%) over recall 
(63.03%), indicating a more conservative prediction approach that is beneficial for confirmatory 
ASD testing but less suitable for early screenings where missing a true ASD case is critical. 
These findings underscore the importance of context-driven model selection—while Neural 
Networks excel in broad screening applications, XGBoost and Random Forest perform better in 
minimizing false positives, and the Stacking Ensemble remains the best choice for 
comprehensive ASD diagnosis. Future research should explore hybrid approaches that optimize 
both sensitivity and specificity to further enhance the reliability of AI-driven ASD detection. 
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Figure 8: Model Comparison Plot 

Feature Importance and Explainability 

The relationship between gender and ASD diagnosis is a crucial aspect of autism research, as 
different prevalence rates have been observed across various studies. Figure 9 illustrates the 
frequency distribution of ASD cases between males and females. The total number of males in 
the dataset is higher than females, with over 270 males classified as non-ASD and approximately 
80 males diagnosed with ASD. In the population of females, there exist 230 individuals without 
ASD, yet 110 females receive an ASD diagnosis. The initial statistical reporting shows a higher 
number of male participants, but the ASD prevalence ratio per sex needs a thorough analysis to 
make accurate conclusions. The average proportion of diagnosed ASD cases among females 
exceeds their total population numbers, making them more likely to receive an ASD diagnosis. 
Research shows that females with ASD typically display distinctive behavioural symptoms, thus 
affecting their diagnosis rates, according to Lai et al. (2020). 
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Figure 9: Gender vs. ASD Diagnosis 

The clinical details surrounding this data pattern lead to inquiries about diagnostic biases related 
to gender and autism expression patterns between sexes. Post-secondary data showing typical 
ratios between male and female ASD cases (3:1 to 4:1) implies female autism spectrum disorder 
patients may receive inadequate diagnoses because their condition presents differently than male 
symptoms do (Hull et al., 2020). This dataset shows an equal ASD diagnosis frequency between 
males and females, indicating potential graciousness within the data collection process or better 
gender distribution than usual clinical samples. Accurate presenting features of ASD require the 
application of diagnostic instruments which account for gender differences as well as 
improvements to assessment algorithms to identify females correctly. Behavioural assessment 
results (A1-A10) and family history data should receive attention as they help enhance AI 
screening techniques and early intervention practices by evaluating male and female diagnostic 
patterns. 

Impact of Data Preprocessing Choices 

Machine learning models need feature preprocessing to achieve generalization capabilities, 
leading to accurate predictions. The correlation heatmap in Figure 10 displays feature 
associations between behavioural scores (A1–A10), age and the ASD classification result. 
Several characteristics in the dataset show significant correlation links above 0.6 between 
A10_Score and Result (0.66), while A5_Score and A4_Score (0.31) also have a substantial 
connection alongside A9_Score and A5_Score (0.48). Multiple variables show redundancy in 
this context because they measure equivalent patterns in underlying data. Feature selection 
removes one of the highly correlated features to stop multicollinearity and overfitting, which 
improves model generalization for unseen data. Features with low correlation values, such as 
A2_Score and Result at 0.39 and A3_Score and Result at 0.35, make independent contributions 
to the prediction; therefore, models can discover distinct patterns for ASD diagnosis. 
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Figure 10: Correlation Heatmap 

The preprocessing process requires feature scaling and encoding as core steps that strongly affect 
the execution of machine learning models. The dataset includes binary categorical features like 
gender and jaundice history and family autism heritage, as well as ordinal behavioural scores, 
age, and other continuous variables. Standardizing numerical features creates an equivalent 
measurement scale that helps XGBoost and Neural Networks prevent discrimination based on 
feature magnitude sizes. One-hot encoded categorical variables provide better recognition 
abilities for patterns among various demographic groups to the predictive model. Implementing 
appropriate preprocessing techniques led to increased overall model performance based on ROC 
AUC scores, which reached 0.9989 for the Stacking Ensemble, 0.9936 for Random Forest and 
0.9859 for XGBoost. Data redundancy becomes a concern when classifying ASD while selecting 
features and implementing preprocessing methods since Figure 10 demonstrates the requirement 
to choose these elements carefully to reach peak accuracy targets. 

Clinical Relevance and Practical Implications 

Incorporating machine learning models into the ASD diagnosis offers good clinical 
development, especially in early detection and treatment planning. There is a wide variation of 
traditional ASD diagnostic techniques, such as behavioural assessments and clinical 
observations, which are often subjective and take a lot of time, causing a long delay in providing 
interventions (Lai et al. 2020). The study has evaluated AI-driven models such as the Stacking 
Ensemble (ROC AUC = 0.9989) and Neural Network (Recall = 95.76%), and they have high 
sensitivity (sensitivity of potential ASD cases at an earlier stage). With this level of predictive 
accuracy, clinicians can combine minimal diagnostic bias to detect traits of ASD earlier and with 
more data-driven therapeutic interventions. In addition, these models can improve treatment 
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strategies by assessing behavioural scores (A1–10) and demographic factors and suggesting 
tailored intervention plans using AI-driven risk assessment of individual patients so that 
therapies are optimized for individual patients. 

Aside from detection, AI models can inform personalized treatment pathway determination for 
future intervention, such as stem cell therapy (Srinivasan et al., 2021). AI can combine 
behavioural and genetic data to determine the response rate to different therapies, allowing 
clinicians to prioritize interventions. Nevertheless, ethical concerns about using AI in clinical 
decision-making include data privacy, algorithmic bias and patient autonomy (Hull et al., 2020). 
Machine learning predictions are dangerous to misdiagnose if one relies too much on prediction, 
while biased training data can disproportionately affect underrepresented populations. For that 
reason, the use of AI for clinical decision-making in ASD care must be developed with 
transparency, clinician validation, and continuous monitoring to ensure equitable and ethical 
applications in the medical AI period in ASD care. 

Integration with Stem Cell Therapy 

Predictive Modeling for Personalized Stem Cell Therapy 

The integration of AI-driven predictive modeling in personalized stem cell therapy for ASD 
represents a transformative shift in autism treatment, moving beyond generalized interventions 
toward data-informed therapeutic precision. Machine learning models, particularly those 
leveraging multi-modal patient data (behavioral scores, genetic markers, and clinical history), 
can identify critical biomarkers that predict a patient’s response to stem cell therapy (Qu et al., 
2022). For example, deep learning architectures analyzing functional brain imaging data 
alongside behavioral scores could pinpoint neurological patterns that correlate with successful 
stem cell therapy outcomes. The ability of AI to synthesize vast amounts of longitudinal patient 
data also allows for the identification of patients who would benefit the most from regenerative 
medicine approaches, reducing the risk of ineffective or unnecessary treatments. This approach 
ensures that stem cell therapy is administered selectively, focusing on cases where AI-predicted 
success rates indicate a high probability of therapeutic benefit. 

Furthermore, AI can be instrumental in developing a dynamic, personalized treatment algorithm, 
where patient progress is continuously monitored, and therapy is adjusted in real-time based on 
response patterns (Suresh et al., 2024). Machine learning models, particularly ensemble methods 
such as stacking (ROC AUC = 0.9989) and neural networks (Recall = 95.76%), could predict 
the ideal cell type, dosage, and treatment frequency for individual patients. Additionally, AI-
enhanced decision support systems could help clinicians optimize post-treatment monitoring by 
analyzing trends in biochemical markers and behavioral improvements, ensuring that each 
patient receives an adapted and evolving therapeutic regimen. While AI introduces 
unprecedented precision, ethical considerations regarding treatment accessibility, data privacy, 
and clinical validation remain critical to ensuring safe and equitable implementation in ASD 
treatment frameworks (Vo et al., 2024). 

Monitoring Treatment Progress with AI 

The analysis of therapy outcomes in ASD patients after completion of treatment has transformed 
AI monitoring tools, which supply instant data-based behavioural assessments during therapy. 
Clinical assessments in traditional methods produce subjective monitoring results that both show 
inconsistent outcomes and contain human subjective errors (Kilpatrick et al., 2023). Combining 
machine learning models in AI-powered tracking systems helps analyze long-term patient data 



636 Integrating Artificial Intelligence and Big Data Analytics 

Journal of Posthumanism 

 

 

to detect behavioural shifts that might escape human detection. AI detects small skill 
developments in ASD patients by analyzing multimodal information of speech, motor movement 
and social relations data using deep learning models for evidence-based therapy changes. The 
reinforcement learning algorithms dynamically maintain therapy evaluations to adapt and tailor 
treatment approaches (Meng et al., 2023). The ongoing feedback mechanism lets clinicians 
adjust their treatment plans because of AI-detected patterns, which maximizes the therapy results 
across individual patients. 

AI models use historical patient information to determine long-term treatment outcomes through 
their ability to find stable improvement indicators (Revah et al., 2022). Combining predictive 
models through ensemble learning strategies (stacking models with ROC AUC = 0.9989) creates 
an ensemble that evaluates long-term treatment forecasting. Artificial intelligence merges testing 
of genetic information with assessment results and therapy following methods to estimate the 
persistence of benefits when patients receive determined treatments. The technique enables 
therapeutic changes before administration, which minimizes superfluous treatments and 
enhances treatment effectiveness. Data privacy, explainable models, and equal access to AI-
based healthcare solutions must be addressed through ethical practices before deploying AI 
solutions responsibly (Vo et al., 2024). 

Challenges and Future Directions 

The high predictive accuracy obtained through AI-driven ASD diagnostic models using stacking 
ensemble models (ROC AUC = 0.9989) alongside neural networks reaching a recall rate of 
95.76% comes with critical outstanding issues. AI models face a crucial challenge because they 
need access to extended patient information to predict therapy responses over time accurately 
(Meng et al., 2023). Current diagnostic practices based on cross-sectional databases cannot 
detect changes in ASD symptoms or physician treatment modifications across different patient 
phases. Follow-up datasets of sufficient length are necessary since models without this data may 
develop excessive Short-Term Patterns that reduce their applicability to actual clinical use. AI 
systems need continuous retraining using varied high-quality datasets to produce reliable 
performance across diverse demographic and clinical populations, according to Srinivasan et al. 
(2021). The current datasets contain imbalanced classes because of lower positive ASD cases, 
which produces prediction biases that hide atypical ASD presentations. 

AI-driven ASD therapies raise essential ethical issues, which include problems with patient 
privacy security as well as discriminatory biases that affect treatment access (Vo et al., 2024). 
The training data used by AI models contains inherent systemic biases from medical records that 
affect racial groups and gender and economic status characteristics. The omission of bias 
remediation will create worsening healthcare inequalities, which results in delayed treatment 
and incorrect diagnoses for minority groups. The risks can be minimized through clear visibility 
of AI decision processes and proper healthcare regulations. Researchers need to investigate 
federated learning implementation for privacy-protected distributed datasets because it enhances 
model fairness alongside security, according to Kabatas et al. (2025). The successful 
implementation of AI tools in medical environments needs randomized controlled trials whose 
purpose is to demonstrate the direct benefits that medical AI applications confer on patients. AI-
powered clinical decision support systems need collaboration between neurologist psychiatry 
and bioethics to develop treatments that match human-guided ethical protocols and effective 
ASD therapy strategies (Qu et al., 2022). 
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Conclusion and Future Work 

This research establishes AI-powered models as powerful agents for ASD screening evaluation 
and therapy improvement methods. The Stacking Ensemble delivered maximum performance 
measurement in the study (ROC AUC = 0.9989, F1 Score = 0.9125), which qualifies it as the 
most straightforward method for practical implementation. The Neural Network models 
performed best at recall testing with a rate of 95.76%, thus offering substantial benefits during 
early ASD case screening. The study proves that AI technologies produce significant diagnostic 
improvements that result in more accurate and timely patient ASD assessments. When AI works 
hand in hand with stem cell therapy selection models, it enables customized treatment choices 
that direct precise therapeutic decisions based on collected biomarkers and individual patient 
information. Real-time patient monitoring through AI systems processes behavioural 
information and predictive analytics to dynamically track therapy advancement and create 
customized treatment plans using feedback-driven adaptations. 

Current promising research in AI technology for ASD diagnostics and treatments faces multiple 
difficulties before achieving broad clinical use. The inadequate availability of extensive real-life 
testing prevents healthcare providers from confirming that these models perform as intended in 
standard clinical settings. The present datasets focus on behaviour-related data and population 
statistics while omitting essential genetic and neurological indicators, which would boost 
diagnosis precision levels. Future healthcare research needs to focus on enhancing dataset data 
diversity, developing methods to reduce biased algorithms, and resolving moral questions about 
AI decision-making power in medical care. New regulations need to be established for the 
medical use of AI models to maintain transparency, interpretability, and accountability features. 
The intersection of artificial intelligence and ASD treatment offers exciting opportunities. 
However, comprehensive cooperation between medical experts, data scientists, and ethical 
experts is needed to realize the beneficial effects of personalized autism interventions. 
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