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Abstract 

Food wastage represents a substantial environmental, economic, and social challenge, contributing to resource reduction. In 
response to these issues, this study investigates the potential of AI-driven dynamic pricing and promotions to decrease food waste 
within the supply chain of food retail. By leveraging machine learning models, namely, Gradient Boosting, SVR, Decision Tree, 
KNN, Random Forest, and Neural Networks, the research seeks to optimize pricing strategies for perishable goods based on factors 
such as shelf life, inventory levels, and demand fluctuations. The model’s performance was evaluated using MAE, R² scores and 
RMSE. Gradient Boosting emerged as the most effective model, achieving the lowest error rates (MAE: 0.113, RMSE: 0.536) and 
highest R² (0.828), indicating strong predictive power and accuracy in price adjustment. The results demonstrate that AI-driven 
dynamic pricing can accurately adjust prices in real-time, encouraging the sale of near-expiration items and thereby reducing food 
wastage. Future research may explore reinforcement learning approaches and expanded datasets to further refine pricing accuracy 
and expand the model’s applicability across different retail contexts. 
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Introduction 

Prophet Muhammad, peace be upon him, said over 1400 years ago, “Do not waste water even if 
you were at a running stream“ (Ibn Mājah et al., 2007). However, it is estimated that around 30 
percent of all food produced for human consumption and intended for consumers is lost or 
wasted, which amounts to approximately 1.3 billion tons yearly. This goes to show the extent of 
an inefficiency that unfolds at several levels along the long and intricate global food supply chain 
throughout its entire lifecycle, from production in the field to consumption by the end user. It 
poses grave economic, environmental and social challenges since this system is far from 
efficient. The inefficiency in the system has to be tackled (Gustavsson et al., 2011).  

Wastage occurs at different levels in a food chain. At the lower end of the scale, large losses 
occur at the early- and middle-stages of the supply chain in lower-income nations due to a lack 
of technological and infrastructural support (Parfitt et al., 2010). Whereas in higher-income 
regions, the major portion of wastage is realized at the retail and consumer levels, due to weak 
quality standards, inefficient practices and reckless consumer behaviours (Quested et al., 2013). 
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Due to the international variations of the distribution of causes for wastage in a food chain, it is 
evident that a single notion of how to reduce this issue is inadequate for all nations. Each nation 
will have supply chain-specific or dynamic solutions that need to be adopted and applied 
depending on context. 

In spite of exhausting attempts through the years to change past practices of wasting food, 
traditional interventions have struggled to properly adjust to the nuances of modern food supply 
chains and consumer markets. Since linear food supply and demand do not adhere to rigid 
patterns any longer, we require radical innovations that are dynamic and adaptable to such supply 
and demand fluidities. Dynamic pricing and promotions through AI is a promising new 
technology transformation that is changing existing practices (Kumar et al., 2017). The growing 
world population and the rising future food demand further compound the need to tackle food 
wastage. 

The other big thing in modern commerce is the adoption of AI in dynamic pricing. AI’s 
implementation is essentially tied to the mechanics of revenue management which is an 
increasingly important business model across all industries. Dynamic pricing is a form of 
revenue management that necessitates fluctuating prices in time as well as markets and internal 
variables like demand and stocks. AI is programmed to rapidly compute massive amounts of 
data, predicting demand and changing prices near real-time for companies (Ramezani et al., 
2011). This is particularly important for those providing products that depreciate in value over 
time, especially in the case of travel, hospitality, and more recently, retail environments. Models 
that hold AI applications for dynamic pricing are based on sophisticated algorithms, including 
machine learning, that allow firms and companies to predict how consumers will react to various 
pricing methods. Such models can incorporate many external influences such as changes in the 
weather, economic conditions or cultural events, and previously they were hard to incorporate 
rapidly in pricing methods (Dasgupta & Hashimoto, 2004). 

Aside from the dynamic pricing that many of us have already encountered, AI can also be used 
to make personalized offers and discounts to consumer profiles, purchasing histories and 
predicted future behaviors that will help to engage customers, increase perceived value to 
customers and thereby increase purchases. This can also be used to help increase consumer 
loyalty (DiMicco et al., 2001) the ability for AI to analyses market conditions in real time and 
respond accordingly gives a distinct advantage of competency for businesses in terms of their 
ability to be proactive with pricing This in turn can increase profit margins and potentially 
capture more market share. 

The objective of this research is to identify and deploy AI-based tools to minimize food wastage 
along the global food supply chain through a series of research objectives, starting from an 
identification of challenges in the food supply chain that lead to food wastage, and designing 
and implementing an AI-based dynamic pricing and promotions model which incorporates 
variables such as demand, shelf life and the level of inventory. It also investigates how dynamic 
pricing influences consumer decision making such as purchasing more items closer to their 
expiry date, by observing the changing of product prices in the market due to various variables 
to affect consumers decision-making when buying products in stores. Finally, how well an AI 
based dynamic pricing and promotions algorithm will reduce food wastage along the supply 
chain can be evaluated and measured in order to understand the real efficiency of AI based 
algorithms to reduce food wastage along the supply chain and increase the overall sustainability 
of the food supply chain. These research objectives aim to contribute to the advancement of 
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sustainable supply chain management through relevant evidence-based insights and practical 
interventions supported through the use of emerging technologies such as AI. 

Literature Review 

There are a number of problems contributing to inefficiency in the food supply chain, leading to 
large-scale wastage, especially in developing countries. Research summarizes a number of 
factors that contribute to this inefficiency. Poor technological infrastructure is a key issue driving 
high losses. for instance, one study of food wastage in India noted the absence of optimal food 
cold storage and transportation facilities was a major contributor of food wastage like fruit and 
vegetables spoil during the transportation, before reaching consumers (Chauhan, 2020). Another 
study likewise identified 16 different causes for food wastage across the supply chain, however 
the lack of effective scientific harvesting process and the unnecessary number of middlemen in 
the supply chain significantly increase food losses by these means that are identified as root 
causes in need of immediate redress to enhance efficiencies in the supply chain (M. & K., 2016). 
Lack of risk management in the supply chain can also be considered a key factor, as argued by 
this particular study, and it connects supply chain risk with food wastage, using a model that 
maps relationships among the different risks identified to argue the potential to reduce food 
wastage through tackling the identified risks such as non-skilled personnel, and poor IT system 
implementation (Mithun Ali et al., 2019). Consider some differences between the countries 
found in the developed world and the developing world; consumer behaviour at retail and 
consumption stages causes high levels of food wastage in the developed countries, while in the 
developing countries, most food loss at the first quarter of the supply chain exist due to the 
inefficiencies in the production, harvesting and in distribution stages and policies which suggest 
that strategic interventions can be used in these regions as the first phase for intervention for 
reducing food loss (Porter & Reay, 2016). Also, unlike non-perishable foods, the perishable food 
supply chain brought bigger wastage compared with other types. This type of food supply chain 
is facing a number of challenges, including absence of horizontal integration and inefficient pre-
harvest management and poor governmental support, which require better infrastructure and 
regulation to facilitate the supply chain to become more efficient and sustainable in the future 
(Kumar et al., 2020). 

Dynamic pricing is presented in various domains as one of the solutions to curb food wastage. 
An e-commerce retail research study, based on a field experiment with more than 100 million 
customers on the largest global retail platform Alibaba, showed that short-term price promotions 
drive twofold increases in the sales of the promoted products. However, these promotions also 
induced long-term strategic behaviors, such as increased expectations of future discounts and 
more aggressive searches for lower prices. These strategic behaviors were then modeled and 
applied to both promoter and non-promoter sellers, showing the far-reaching effects of dynamic 
pricing strategies on the aggregate market ecosystem (Zhang et al., 2018). In the retail sector, 
dynamic pricing has been used productively in revenue management for perishable inventory 
items. In the study, they examine the use of ‘buy one get one free’ and ‘50 percent off’ 
promotions and found that the size of the purchase as well as the timing of purchases can result 
in significant influences on customers’ buying patterns, aligning closely with inventory and 
revenue management goals (Kim et al., 2016). Price in the airlines is variable according to 
demand, length of time you reserve, and the seats. We have seen most of the airlines use dynamic 
pricing in order to make the most amount of money but mostly on a perishable inventory like 
airline seats. It’s common now to price airline seats, hotel rooms and car rental real-time to 
accommodate for supply and demand inefficiencies (Elmaghraby & Keskinocak, 2003). In the 
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online sale and service of cars and other automotive products, we can use dynamic pricing 
algorithms to dynamically adjust the price of vehicles and services depending on demand, 
available inventory, and competing offers. The study suggests the use of dynamic pricing along 
with a direct-to-customer business model to help automotive manufacturers to respond to 
pressures from the market, helping the inventory and pricing (Biller et al., 2005). 

Artificial intelligence (AI) is revolutionizing supply chain management through improved 
decision-making processes, higher efficiency, and reduced operation costs. Numerous studies 
showcase the diverse applications of AI to manage diverse sides of the supply chain, including 
procurement, logistics, and inventory management, to benefit organizations. One study 
investigated beforehand the importance of AI for supply chain financing, highlighting how AI 
holds the power teds considerably towards a higher level in mitigating risks, detecting fraudulent 
activities, and improving working capital efficiency. Based on the result of this study, AI can be 
utilized to analyze huge amounts of data for identifying inefficiency and mitigating risk upfront 
by informing more transparent and informed strategic decisions of financing activities by 
companies. This leads to lower-cost financing decisions beneficial for improving organizations’ 
financial performance (Rajagopal et al., 2023). In logistics, the second broad section analyzed 
the allowance of innovative technologies including AI application benefits to optimize the 
logistics process. AI can not only assist with automating well-defined workflows but also 
enhance the decision-making capabilities of logistics planners. Despite the potential to replace 
humans in the logistics process, AI integration in logistics cannot be more critical to improving 
decision-making performance. Specific trade-offs between logistics versus AI can be defined: 
AI can manage a barrel of complex data streams occurring within the whole logistics process 
that enables interactions at a human-like rate and timing, such as safety and worker’s welfare, 
and operational flexibility (Boute & Udenio, 2023). The third section explored how AI can 
optimize performance in contemporary industrial supply chains. The study found that AI was 
capable of improving the accuracy of capacity planning, optimizing the utilization of equipment 
and resources, and mitigating sudden changes in the demand for goods and services. These 
practice settings were critical to maintaining productivity, reducing overall costs and optimizing 
the supply chain while providing extremely high-quality goods and services to the end consumer 
demand and ensuring safe and secure operating environments (Alomar, 2022). 

The current climate of dynamic pricing sees the use of different dynamic pricing AI models to 
facilitate smart self-adjustments in real-time because it allows one to deliver adaptive pricing 
which responds to the dynamic supply and demand, and also to consumer behavior, current 
offerings, and other factors that come into play. A review of some machine learning models for 
dynamic pricing with different configurations is occasioned as Gradient Boosting Machines 
(GBM) have been applied widely due to their ability to cope with diverse and complex datasets. 
They have notable applicability in the e-commerce domain; where a project applied GBM to 
enable it to determine the optimal pricing approach. Project outcomes demonstrated near-perfect 
optimized results, through training relying on transactional data falling within a historically 
identified period. The model was able to derive insights that enabled precision in determining 
the optimal price points for the seller of the product, all geared towards improving revenue 
performance. The GBM machine learning aspect delves into feature-engineering and hyper 
parameter optimization techniques for superior predictive outcomes (El Youbi et al., 2023). 
Reinforcement Learning (RL) is another dynamic pricing AI model showing considerable 
promise in instances where decisions must be taken in specific dynamic conditions where 
uncertainty is involved. It is instructive to note that two algorithms were compared for evaluative 
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purposes: the Deep Q-Network (DQN) and Soft-Actor Critic (SAC).  Findings indicate that SAC 
did perform better than DQN when applied to dynamic online market scenarios. This is because 
of the RL property where it explores new pricing decision while balancing it against its ability 
to exploit what is already known of the pricing system (Kastius & Schlosser, 2022). Decision 
Tree Regressors also hold appeal for their simplicity, and seem effective in modelling nonlinear 
scenarios. This machine learning model was applied to the real-estate sector to predict values 
with high accuracy, given the ability of the algorithm to process copious amounts of 
geographical and market trend data. In certain sectors where pricing is driven by a host of factors, 
simplicity and interpretability are credible goals, especially if pricing is dependent on a wide 
array of variables (Kumar et al., 2023). Finally, one can point to the application of Bayesian 
Learning approaches that take uncertainty seriously in that they were applied to optimize pricing 
while coping with the variability of consumer behavioral responses to same. This approach is 
useful when the number of historical records is limited or where market conditions are viewed 
as highly unpredictable (Han, 2010). 

The literature shows that AI-enhanced dynamic pricing models have experienced significant 
advancements. However, it also highlights that a gap remains for dynamic analysis on demand 
forecasting, shelf life and inventory optimization. The current approaches all endeavour to 
determine the price shifts described by the elastic and inelastic parts of general demand, while 
also relying on consumer segmentation for how different consumer behavior affects the 
sensitivity to price. Although some attempts acknowledge the critical factor of product 
perishability, they are sparse and therefore do not demonstrate the true value that real-time data 
can add to price setting. For example, Herbon focused on the optimal price strategy for a 
carbonated drink with high consumer sensitivity to product freshness. He proposed a linear 
model but failed to extend it to utilise real-time data to further refine the price dynamic strategy. 
Similarly, some are interested in the application of AI for perishable product supply chain 
management but their models are not explicitly linked to dynamic price adjustments. For 
packaged food products, Yimenu recently proposed an AI-powered modelling for real-time 
shelf-life estimation and its prediction (Yimenu et al., 2019). Their model admitted the 
promising application in dynamic pricing but the topic was off the scope of the study. These 
studies highlight the crucial gap in the literature on how AI-powered pricing models can 
facilitate market penetration of perishable products with real-time input from shelf life 
predictions and enhance operational efficiency and consumer experience. 

Research Methodology 

This section presents an overview of the datasets, the proposed work, the architecture, and the 
algorithms used for the AI pricing and promotion model to reduce food wastage. 

Dataset 

A private dataset was extracted from a supermarket POS system and published in Kaggle. Its 
food inventory list contains 171 items collected in 2020 and May 2021. It contains 14 columns, 
13 features, and a target variable. The features are id, date_collected, retailer_type, 
retailer_detail, food_type, food_detail, label_type, label_language, label_date, image_id, 
label_explanation, collection_lat, and collection_long. The target variable is 
approximate_dollar_value. The value range of “Approximate Dollar Value” is from 
approximately $0.73 to $26.99, with a mean of $5.50. This indicates a wide range of food item 
values, potentially reflecting different types of food or portion sizes. The coordinates are 
concentrated around a specific geographic location (mean collection_lat: 40.6946, mean 
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collection_long: -73.9924) with a small standard deviation in these coordinates confirming the 
data collection occurred within the limited area of the supermarket. As Table 1 explains, most 
items are perishable and packaged food. The dataset has 51 missing values in the “Label 
Language” column and 170 in the “Label Explanation”. 

 

Food type 

packaged perishable ready-to-eat shelf stable 

Co

unt 

Value $ 

(AVG) 

Co

unt 

Value $ 

(AVG) 

Co

unt 

Value $ 

(AVG) 

Co

unt 

Value $ 

(AVG) 

bakery/deli 35 7.07             

chain 
grocer 

    34 5.99         

coffeeshop 2 3.75             

counter 
service 

4 3.5     5 7.35     

drugstore 8 4.79 33 2.19 11 3.31     

health food 
grocer 

    35 6.82     4 11.24 

Table 1 Characteristics of the Food 

 

Figure 1 Dataset Distribution Graph 

Model Building Process 

The methodology used to build the AI dynamic pricing and promotion is presented here. The 
dataset is first preprocessed using various techniques to prepare it for analysis. Afterwards, the 
data is split into two sets: a training set for building the AI pricing model, and a test set for 
assessing its performance. The machine learning models are trained on the created training set 
and then tested on the test set using various metrics to evaluate their performance. Figure 2 
illustrates the architecture of this process. 
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Figure 2 Data Analysis Process 

Data Preprocessing 

The data was preprocessed with data encoding, missing value imputation, transformation of 
skewed distributions, weighting the data, feature scaling, feature selection etc. Here’s a 
breakdown of these techniques. As can be seen in figure 2 before, this is the complete 
preprocessing structure. 

Handling Missing Values 

For columns with missing values like “label_language” and “label_explanation”, we need to 
decide whether to fill these gaps with default values using statistical methods to attribute them 
or drop them if they are not critical for our analysis (Iliou et al., 2015). To maintain dataset 
integrity without introducing bias, we attributed the missing values in 'label_language' and 
'label_explanation' with 'Unknown' and 'No explanation', respectively.  

Data Type Conversions, Categorization and Encoding 

Following standard preprocessing practices, the 'date_collected' and 'label_date' columns were 
converted from strings to datetime objects, which facilitates more straightforward time-based 
analyses, ensures numeric fields are correctly formatted, and handles any anomalies or incorrect 
data types (García et al., 2016). Categorization and encoding of categorical variables like 
'retailer_type,' 'food_type,' and 'label_type' are essential for preparing data for machine learning 
algorithms. Encoding techniques such as one-hot encoding or label encoding are important for 
transforming categorical data into a format that can be easily processed by machine learning 
models (Ramírez-Gallego et al., 2017). The choice between these techniques depends on the 
model requirements and the specific nature of the categorical data. 

Data Cleansing and Outlier Handling 

Data cleansing means identifying and removing data that is incorrect, corrupted, incorrectly 
formatted, duplicated, or incomplete from a data set. Data cleansing can include noise filtering 
and error correction, which is essential to the quality of the data for processing (Famili et al., 
1997). We found some invalid data in the column “label_date” which were removed. Also, 
outliers in 'approximate_dollar_value' were managed using the Interquartile Range (IQR) 
method, a standard technique for reducing the influence of extreme values on the dataset’s 
overall analysis. The literature supports this method for its effectiveness in normalizing data 
distributions (Iliou et al., 2015). 

Exploratory Data Analysis (EDA) 

Initial EDA was performed to gain understandings into the distribution and characteristics of 
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key variables, such as “retailer type” and “food type”. This phase is critical for identifying 
patterns and potential areas of interest for deeper analysis and understanding data streams in 
preparation for data mining (Ramírez-Gallego et al., 2017). The following figures visualize the 
relationships and find some interesting insights. Figure 4 shoes that “Packaged” food type is the 
most common, followed by “perishable” food items. In contrast, the boxplot in figure 3 reveals 
the variation in “approximate dollar” values across different retailer types. “Bakery/deli” items 
have a higher range of values compared to others. Lastly, we can see in figure 5, the count of 
food waste occurrences by the day of the week shows that certain days like “Monday” and 
“Thursday” have higher counts, indicating possible patterns in food waste. 

Feature Engineering 

Feature engineering is a critical step in enhancing the predictive power of machine learning 
models by creating new features or modifying existing ones (Sreenivas & Srikrishna, 2013). The 
following features of engineering ideas can be helpful to analyze our dataset. Here are a few 
feature engineering ideas we can implement based on the existing data: 

• Time to Expiry: Calculate the number of days from the date collected to the label date. 
This could give us insights into whether items closer to their expiry date are more likely to be 
wasted. Also, it may provide insights into shelf life and its impact on wastage. 

• Weekday of Collection: Derive the day of the week from the date_collected. This could 
help in understanding if more food waste occurs on specific days of the week. 

• Month of Collection: Extract the month from date_collected to see if certain months 
have higher wastage, potentially indicating seasonal trends. 

• Year of Collection: Although the data range is not very long, extracting the year could 
be useful if the dataset is expanded in the future. 

• Label Date Validity: Create a binary feature indicating whether the label date is valid 
(i.e., whether it is after the date collected). This could help identify labeling errors or unusual 
patterns. 



Abdullah et al. 579 

posthumanism.co.uk 

 

 

 

Figure 3 Approximate Dollar by Retailer Type 
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Figure 5 Food Waste Count 

Building ML model 

To create a dynamic pricing model that adjusts prices based on demand, shelf life, and inventory 
levels to reduce food wastage. First, we are investigating to find the best model for our scenarios 
so the following is the comparison between different algorithms. 

Model Selection 

Choosing the right models for dynamic pricing when trying to minimize food wastage is an 
important component of this research. The models must be robust, able to deal with massive 
datasets, and efficient at inferring the approximate dollar value of foods on different basis like 
shelf life, demand and stock levels. The following machine learning models were chosen because 

Figure 4 Distribution of Food Types 
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they have been validated for similar regression tasks and may be applicable for dynamic pricing 
models: 

Random Forest (RF): RF is an ensemble learning method, which trains different decision trees 
and gets average prediction out of those trees. This model is famous for being robust, it can 
handle high dimensional and large data and reduces overfitting when compared to individual 
decision trees (Breiman, 2001). RF was selected for its capacity to manage diverse feature sets 
and its proven track record in various prediction tasks. The ensemble nature of RF helps in 
capturing complex relationships within the data, making it a strong candidate for dynamic 
pricing. 

Support Vector Regression (SVR): SVR uses the Support Victor Machines (SVM) model which 
is specially built for regression problem. It attempts to approximate the best line with a threshold 
of some number with some error. SVR works on small to medium datasets and is especially 
efficient in high dimensional areas (Drucker et al., 1996). The flexibility of SVR in handling 
non-linear relationships through kernel functions (linear, polynomial, RBF) makes it a potential 
candidate for modeling the intricate dynamics of pricing based on various factors. 

K-Nearest Neighbors (KNN): KNN is a nonparametric algorithm used in classification and 
regression. It find the K closest neighbors to some query point and averages them out. KNN is 
easy to set up and can be read but computationally expensive for big datasets (Altman, 1992). 
Despite its simplicity, KNN was considered for its effectiveness in capturing local data 
structures, which can be useful in pricing items based on similar historical data points. 

Decision Tree (DT): DT is an interactive tree-like diagram of options and their implications. It 
is visualisable and interpretable which is useful for determining the model decision-making. But 
DT can overfit, so we should be aware when we are working with very large data (Quinlan, 
1986). DT was selected for its simplicity and clarity in explaining the factors influencing pricing 
decisions, which is valuable for understanding and refining the dynamic pricing strategy. 

Gradient Boosting (GB): GB is a way to merge models from other models sequentially, where 
the model below seeks to correct the previous models errors. GB works well for most types of 
predictive modelling since it is iterative and can boost the performance of weak learners by doing 
so (Friedman, 2001). GB was chosen for its superior performance in predictive accuracy and its 
robustness in handling complex, high-dimensional data. Its ability to minimize prediction errors 
iteratively makes it a strong candidate for dynamic pricing. 

Neural Network (NN): NNs are based on human brain architecture and they can detect complex 
relationships in the data with layers of connected nodes. NNs are extremely accurate but still 
have a lot of computational load and tuning involved (Goodfellow et al., 2016). NN was 
considered for its potential to model complex, non-linear relationships in the data, which are 
often present in dynamic pricing scenarios. 

Hyperparameter Tuning and Cross-Validation 

Hyperparameter tuning is a must to get maximum performance from your model. That means 
choosing the optimal combination of hyperparameters that govern how the models learn. 
Hyperparameter tuning was done for each model by grid search and cross-validation. Grid search 
sequentially looks through various combinations of parameter values, then by cross-validating 
them finds out which one works best (Bergstra & Bengio, 2012). 

Random Forest (RF): Key hyperparameters set were tree size estimators, tree depth and 
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minimum number of samples needed to split a node. This way the model will not overfit or 
underfit the data (Breiman, 2001). 

Support Vector Regression (SVR): Important hyperparameters were the kernel type (linear, 
polynomial, radial basis function), regularization parameter (C), and epsilon. This enables the 
model to accommodate different levels of non-linearity and modulate its tolerance to error 
margins (Smola & Schölkopf, 2004). 

K-Nearest Neighbors (KNN): Neighbours (K) and distance units (Euclidean, Manhattan) were 
chosen optimally. This tuning is designed to smooth the bias-variance tradeoff of the model and 
to increase its generalization capability from training data (Altman, 1992). 

Decision Tree (DT): The hyperparameters like maximum depth, minimum samples split, and 
minimum samples leaf were optimized. They also employed pruning to prevent overfitting by 
restricting the tree’s complexity (Quinlan, 1986). 

Gradient Boosting (GB): Learning speed, boosting stages (estimators) and depth maximum of 
each estimator were the hyperparameters we optimized. It’s a technique called iterative booster 
which allows strong predictors to be produced from poor learners (Friedman, 2001). 

Neural Network (NN): Hyperparameters pertaining to the network design, including layers and 
neurones per layer, learning rate, activation functions, and regularization parameters (dropout 
rates) were carefully calibrated. These adjustments enable the network to learn complex patterns 
without overfitting (Goodfellow et al., 2016). 

This cross-validation was carried out to validate that the model’s performance is generalized 
rather than limited to the training data. We used k-Fold cross-validation, where k is 5 or 10 and 
the data is partitioned into k subsets. The model is trained on k-1 of these subsets, with the last 
subset being validated. This is repeated k times, where each subset takes turns as the validation 
set (Stone, 1974). This method provides a robust assessment of model performance and reduces 
the likelihood of overfitting. 

Evaluation Criteria 

We scored each model across a number of parameters to get a true-to-goodness measure. These 
statistics indicate how good the models are, their margins of error, and their explanatory power. 

Mean Absolute Error (MAE): MAE gives you an estimate of the average number of errors in the 
prediction and the real numbers which gives a good idea of how well the model predicts. It is 
the average of the absolute difference between the prediction and the value. Lower MAE means 
better model performance (Willmott & Matsuura, 2005). 

Root Mean Squared Error (RMSE): RMSE is a measure that measures the variance between the 
estimated and measured value and it’s more important for large errors. It is calculated by the 
square root of the mean of squared differences between predicted and measured values. RMSE 
can help you to know how error is distributed and penalize the larger errors harder (Chai & 
Draxler, 2014). 

R² Score: The R2 score or coefficient of determination is how much of the variability in the 
dependent variable can be explained by the independent variables. A R2 score near 1 means that 
the model explained a high percentage of variance, and a score near 0 indicates lower 
explanatory power (Nagelkerke & others, 1991). This metric is essential for assessing how well 
the model explains the variability of the data. 
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These criteria were applied to evaluate both the predictive accuracy and the reliability of each 
model. The best performers were Gradient Boosting and Decision Tree, with R2 and low error 
rate respectively which make them ideal candidates for dynamic pricing for food wastage 
prevention (El Youbi et al., 2023). 

Model Evaluation and Results 

The model Decision Tree and Gradient Boosting both do well according to the analysis, with 
good R2 and low errors. Random Forest also does well, a bit less than Decision Tree and 
Gradient Boosting. And K-Nearest Neighbors (KNN) is performing slightly better. Meanwhile, 
Support Vector Regression (SVR) and Neural Network are also doomed in this scenario. Neural 
Network has a very low R2 value which means the model is not fitting to the data well. So, we’ll 
use Decision Tree and Gradient Boosting as both are good in performance.  

All of these metrics gave us clues as to whether the models were effective at forecasting the right 
price for perishable goods. The MAE indicator showed Gradient Boosting and Decision Tree 
close correlation with prediction and price. Lower MAE values translate into lower price errors, 
which is very important in dynamic pricing in order to get consumers to make purchases as soon 
as possible without affecting revenue. This was confirmed by the RMSE which for both Gradient 
Boosting (0.536) and Decision Tree (0.549) suggests low significant price deviation in 
predictions. The slightly higher RMSE of Random Forest and KNN (0.576 & 0.983 respectively) 
indicate that these models are introducing larger errors and are less effective for high-risk 
scenarios such as price on perishable goods.  

The R2 scores were most helpful for evaluating how each model explained price variation with 
the input features. Gradient Boosting’s R2 of 0.828 and Decision Tree’s R2 of 0.820 demonstrate 
that such models can be able to account for the driver of price change such as demand shift and 
perishability. In contrast, the negative R2 scores for SVR and Neural Network suggest a 
mismatch with the data which could be caused by the fact that the models don’t generalize well 
across all features. 

 

Model MAE RMSE R2 

Random Forest 0.125646 0.576838 0.800906 

SVR 0.954271 1.402496 -0.17694 

KNN 0.455466 0.982745 0.422129 

Decision Tree 0.118954 0.548928 0.819706 

Gradient Boosting 0.113261 0.535695 0.828295 

Neural Network 1.225096 1.866308 -1.08409 

Table 2 Model Comparison 
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Figure 6 Model Comparison 

So, the high R² and low error rates in Gradient Boosting and Decision Tree models ensured that 
these two models performed better than their counterparts. That also means these two models 
could be the best candidate for dynamic pricing applications that includes solving wastage 
issues, since they can provide real-time price changes based upon expiry date approaches, 
demand trend changes and stock levels. To put this in perspective, dynamic price changes allow 
retailers to better match consumer behaviour, in this case, to ensure that near-expiry products 
get sold instead of going to waste. Thus, dynamic pricing models that are better aligned with 
real-time market data can assist retailers in two important goals by addressing not only financial 
objectives but also the goals of more sustainable food supply chains. 

Since the SVR and Neural Network models achieved the lowest results, perhaps more 
interpretable models – like Gradient Boosting and Decision Trees – will be better for this 
scenario. Additionally, the interpretability of a DT and GB can support retailers by providing 
actionable insights on how each feature is impacting decisions regarding what and when to price. 
Armed with these insights, retailers can become more operationally efficient and reduce wasteful 
fast-expiring stock. Although DT and GB models were very effective, future research could 
consider applying hyperparameter tuning to better optimise the models, as well as using real-
time consumer behaviour data or external market-level factors. Further, a model could 
potentially be able to react in a more dynamic way to new data. For example, in reinforcement 
learning approaches, the agent not only chooses which actions will be the most effective, but 
also how to respond to changes in the environment like feedback from the sales department. We 
could envision a dynamic pricing system that autonomously makes decisions about what to price 
based on quantitative measures of sales and demand shifts, all of this potentially allowing us to 
improve model performance and impact waste reduction even further. 
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Discussions and Implications 

This also demonstrates the potential use of AI-driven dynamic pricing in reducing food waste, 
which complements ongoing efforts to cut environmental impacts that result from extra steps 
added to the supply chain to mitigate ‘spoilage.’ The high level of accuracy of the Gradient 
Boosting model further suggests that dynamic pricing is a useful tool, one that can be used to 
target date-sensitive items and effectively induce customers to make timely purchases, before 
the item’s expiry date. This targeted intervention can go a long way in reducing the economic 
and environmental cost of food waste.  

The environmental benefits of food waste reduction resulting from the use of this AI model are 
also significant. Each kilo of wasted food represents a significant loss of water, energy and 
farmland. Waste reduction is an important pillar of ecological modernisation and the concept of 
sustainable development in general (Porter & Reay, 2016). Therefore, the key objective of the 
application of AI in the case of dynamic pricing is to bring optimisation of the use and absolute 
reduction of the retailers’ and brands’ waste through adjustment of the prices of the items with 
a closing best-before date and through the channel of setting revisions to the price. According to 
numerous studies, cutting food waste may lead to a reduction of 8 to 10 per cent of all greenhouse 
gas emissions from the food sector (Pandey, 2021). Adjusting pricing according to real-time 
factors such as inventory or perishability has the capacity to improve food sales not only due to 
the price attractiveness but also due to the appreciation by the clients and help to support the 
concept of a circular economy. Such an economy involves consumption of all food products so 
that the quantity of waste can be minimised at all stages of supply. 

The dynamic pricing produced by AI contributes to consumers’ long-term habits, promoting the 
behavioural change beyond the direct environmental effect of reduced surplus food waste. 
Having such items discounted near their expiry dates more often will prompt consumers to 
purchase them, which in turn helps them reduce their own food waste at home. As it comes to 
be seen as sustainable behaviour to buy near-expiry-date products, many more could begin 
engaging in this commercial activity, which in turn may amplify environment-friendly impact 
(Quested et al., 2013). Recent surveys have highlighted that ethical considerations are important 
in the purchase decisions of consumers when they consider where to shop. If the discounting 
practice of retailers incorporates more transparency, for example, by notifying the degree of 
discount in advance, saving consumers time from checking the price tag at the supermarket, or 
by pointing out the discounted items with visual cues, or flagging products that have near-expiry 
dates. This will encourage more consumers to participate in sustainable food waste reduction, 
promoting equitable consumption (Parfitt et al., 2010). 

This highlights an area for further research: using reinforcement learning (RL) and other 
responsive AI models that adjust prices based on emerging consumer purchase patterns, which 
could provide an additional boost for waste reduction by addressing it inment learning has 
worked well in retailer pricing, as it adjusts prices iteratively to better suit consumer 
responsiveness and inventory status (Kastius & Schlosser, 2022). Running RL and similar 
models at scale in different retail contexts and regions, while still accounting for how local 
consumer behaviour and market conditions affect waste-reduction outcomes, could result in a 
scalable, ecological solution for food-waste mitigation. 

To summarise, dynamic pricing with AI can help to reduce food waste resulting from high prices. 
First, a smoother price curve will keep at least some of the undesired customers away from 
restaurants during periods of high demand. Also, by setting prices that would prevent a high 
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amount of unsold inventory, dynamic pricing will help to save natural resources and greenhouse 
gas emissions. Additionally, the application of dynamic pricing might lead to a green dietary 
shift in consumer behaviour. These results suggest that AI-based pricing strategies can make 
significant contributions to improve environmental sustainability in food supply chains. AI-
driven dynamic pricing approaches should therefore be further developed and applied in 
different retail sectors. 

References 
 

Alomar, M. A. (2022). Performance Optimization of Industrial Supply Chain Using Artificial Intelligence. 

Computational Intelligence and Neuroscience, 2022, 1–10. https://doi.org/10.1155/2022/9306265 

Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The 

American Statistician, 46(3), 175–185. https://doi.org/10.1080/00031305.1992.10475879 

Biller, S., Chan, L. M. A., Simchi-Levi, D., & Swann, J. (2005). Dynamic Pricing and the Direct-to-

Customer Model in the Automotive Industry. Electronic Commerce Research, 5(2), 309–334. 

https://doi.org/10.1007/s10660-005-6161-4 

Boute, R. N., & Udenio, M. (2023). AI in Logistics and Supply Chain Management. In R. Merkert & K. 

Hoberg (Eds.), Global Logistics and Supply Chain Strategies for the 2020s (pp. 49–65). Springer 

International Publishing. https://doi.org/10.1007/978-3-030-95764-3_3 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–

Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–

1250. 

Chauhan, Y. (2020). Food Waste Management with Technological Platforms: Evidence from Indian Food 

Supply Chains. Sustainability, 12(19), 8162. https://doi.org/10.3390/su12198162 

Dasgupta, P. R., & Hashimoto, Y. (2004). Multi-attribute dynamic pricing for online markets using 

intelligent agents. Autonomous Agents and Multiagent Systems, International Joint Conference On, 2, 

277–284. 

DiMicco, J. M., Greenwald, A., & Maes, P. (2001). Dynamic pricing strategies under a finite time 

horizon. Proceedings of the 3rd ACM Conference on Electronic Commerce, 95–104. 

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1996). Support Vector Regression 

Machines. In M. C. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in Neural Information 

Processing Systems (Vol. 9). MIT Press. 

https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-

Paper.pdf 

El Youbi, R., Messaoudi, F., & Loukili, M. (2023). Machine Learning-driven Dynamic Pricing Strategies 

in E-Commerce. 2023 14th International Conference on Information and Communication Systems 

(ICICS), 1–5. https://doi.org/10.1109/ICICS60529.2023.10330541 

Elmaghraby, W., & Keskinocak, P. (2003). Dynamic Pricing in the Presence of Inventory Considerations: 

Research Overview, Current Practices, and Future Directions. Management Science, 49(10), 1287–

1309. https://doi.org/10.1287/mnsc.49.10.1287.17315 

Famili, A., Shen, W., Weber, R., & Simoudis, E. (1997). Data preprocessing and intelligent data analysis. 

Intelligent Data Analysis, 1(1–4), 3–23. https://doi.org/10.1016/S1088-467X(98)00007-9 

FAO (Ed.). (2019). Moving forward on food loss and waste reduction. Food and Agriculture Organization 

of the United Nations. 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of 



Abdullah et al. 587 

posthumanism.co.uk 

 

 

Statistics, 1189–1232. 

García, S., Luengo, J., & Herrera, F. (2016). Tutorial on practical tips of the most influential data 

preprocessing algorithms in data mining. Knowledge-Based Systems, 98, 1–29. 

https://doi.org/10.1016/j.knosys.2015.12.006 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses 

and food waste. FAO Rome. 

Han, W. (2010). A Dynamic Pricing Algorithm by Bayesian Q-learning. 2010 Second International 

Conference on Computer Modeling and Simulation, 515–519. 

https://doi.org/10.1109/ICCMS.2010.240 

Herbon, A. (2014). Dynamic pricing vs. Acquiring information on consumers’ heterogeneous sensitivity 

to product freshness. International Journal of Production Research, 52(3), 918–933. 

https://doi.org/10.1080/00207543.2013.843800 

Ibn Mājah, M. ibn Y., Zaʼī, A. Ṭāhir Z. ʻAlī, Khattab, N., Khattab, H., & Abū Khalīl. (2007). English 

translation of Sunan Ibn Mâjah (Vol. 1). Darussalam. 

Iliou, T., Anagnostopoulos, C.-N., Nerantzaki, M., & Anastassopoulos, G. (2015). A Novel Machine 

Learning Data Preprocessing Method for Enhancing Classification Algorithms Performance. 

Proceedings of the 16th International Conference on Engineering Applications of Neural Networks 

(INNS), 1–5. https://doi.org/10.1145/2797143.2797155 

Kastius, A., & Schlosser, R. (2022). Dynamic pricing under competition using reinforcement learning. 

Journal of Revenue and Pricing Management, 21(1), 50–63. https://doi.org/10.1057/s41272-021-

00285-3 

Kim, K.-K., Lee, C.-G., & Park, S. (2016). Dynamic pricing with ‘BOGO’ promotion in revenue 

management. International Journal of Production Research, 54(17), 5283–5302. 

https://doi.org/10.1080/00207543.2016.1173250 

Kumar, A., Mangla, S. K., Kumar, P., & Karamperidis, S. (2020). Challenges in perishable food supply 

chains for sustainability management: A developing economy perspective. Business Strategy and the 

Environment, 29(5), 1809–1831. https://doi.org/10.1002/bse.2470 

Kumar, Prof. A., Rawat, H., & Singh, Y. (2023). Effective Machine Learning Algorithm to Predict House 

Price. International Journal for Research in Applied Science and Engineering Technology, 11(11), 

1741–1744. https://doi.org/10.22214/ijraset.2023.56935 

Kumar, V., Anand, A., & Song, H. (2017). Future of Retailer Profitability: An Organizing Framework. 

Journal of Retailing, 93(1), 96–119. https://doi.org/10.1016/j.jretai.2016.11.003 

M., B., & K., A. (2016). Modeling the causes of food wastage in Indian perishable food supply chain. 

Resources, Conservation and Recycling, 114, 153–167. 

https://doi.org/10.1016/j.resconrec.2016.07.016 

Mithun Ali, S., Moktadir, Md. A., Kabir, G., Chakma, J., Rumi, Md. J. U., & Islam, Md. T. (2019). 

Framework for evaluating risks in food supply chain: Implications in food wastage reduction. Journal 

of Cleaner Production, 228, 786–800. https://doi.org/10.1016/j.jclepro.2019.04.322 

Nagelkerke, N. J. & others. (1991). A note on a general definition of the coefficient of determination. 

Biometrika, 78(3), 691–692. 

Pandey, A. (2021). FOOD WASTAGE: CAUSES, IMPACTS AND SOLUTIONS. Science Heritage 

Journal, 5(1), 17–20. https://doi.org/10.26480/gws.01.2021.17.20 

Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: Quantification 

and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 365(1554), 3065–3081. https://doi.org/10.1098/rstb.2010.0126 



588 Towards a Sustainable Retail Food Chain: Artificial Intelligence 

Journal of Posthumanism 

 

 

Porter, S. D., & Reay, D. S. (2016). Addressing food supply chain and consumption inefficiencies: 

Potential for climate change mitigation. Regional Environmental Change, 16(8), 2279–2290. 

https://doi.org/10.1007/s10113-015-0783-4 

Quested, T. E., Marsh, E., Stunell, D., & Parry, A. D. (2013). Spaghetti soup: The complex world of food 

waste behaviours. Resources, Conservation and Recycling, 79, 43–51. 

https://doi.org/10.1016/j.resconrec.2013.04.011 

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. 

https://doi.org/10.1007/BF00116251 

Rajagopal, M., Nayak, K. M., Balasubramanian, K., Abdul Karim Shaikh, I., Adhav, S., & Gupta, M. 

(2023). Application of Artificial Intelligence in the Supply Chain Finance. 2023 Eighth International 

Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1–6. 

https://doi.org/10.1109/ICONSTEM56934.2023.10142286 

Ramezani, S., Bosman, P. A. N., & La Poutre, H. (2011). Adaptive Strategies for Dynamic Pricing 

Agents. 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent 

Technology, 323–328. https://doi.org/10.1109/WI-IAT.2011.193 

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., & Herrera, F. (2017). A survey on data 

preprocessing for data stream mining: Current status and future directions. Neurocomputing, 239, 39–

57. https://doi.org/10.1016/j.neucom.2017.01.078 

Sreenivas, P., & Srikrishna, C. V. (2013). An analytical approach for data preprocessing. 2013 

International Conference on Emerging Trends in Communication, Control, Signal Processing and 

Computing Applications (C2SPCA), 1–12. https://doi.org/10.1109/C2SPCA.2013.6749435 

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal 

Statistical Society: Series B (Methodological), 36(2), 111–133. 

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean 

square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. 

Yimenu, S. M., Koo, J., Kim, B. S., Kim, J. H., & Kim, J. Y. (2019). Freshness-based real-time shelf-life 

estimation of packaged chicken meat under dynamic storage conditions. Poultry Science, 98(12), 

6921–6930. https://doi.org/10.3382/ps/pez461 

Zhang, D. J., Dai, H., Dong, L., Qi, F., Zhang, N., Liu, X., Liu, Z., & Yang, J. (2018). How Do Price 

Promotions Affect Customer Behavior on Retailing Platforms? Evidence from a Large Randomized 

Experiment on Alibaba. Production and Operations Management, 27(12), 2343–2345. 

https://doi.org/10.1111/poms.12964. 

 
 


