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Abstract 

We developed and evaluated an AI‐powered workflow to build a virtual library of anti‐inflammatory phytochemicals for educational 
use. Text mining of PubMed and Scopus identified 150 candidate compounds, 132 of which were curated and converted into 
standardized SMILES. A Random Forest QSAR model achieved R² = 0.82 for COX‐2 IC₅₀ prediction, and docking with AutoDock 
Vina confirmed high binding affinities (−9.2 to −8.0 kcal/mol). The resulting MySQL‐driven web platform allowed undergraduate 
students to perform structure–activity analyses and molecular docking in class. A post‐module survey (n = 42) showed a significant 
gain in computational confidence (mean = 2.2; p < 0.001). This approach enhances both research efficiency and computational 
training in life‐science education. 
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Introduction 

Artificial intelligence (AI) has rapidly transformed STEM education by enabling data‐driven 
and interactive learning environments that foster higher‐order thinking skills (Vieriu & Petrea, 
2025). In biochemistry and molecular biology, computational modules—from virtual labs to 
simulation tools—have been shown to reinforce core concepts such as protein structure–function 
relationships and metabolic pathway analysis(Alvarez, 2021). 

The deployment of AI‐generated virtual libraries of natural compounds offers new opportunities 
for both research and pedagogy. Recent reviews highlight the breadth of phytochemicals with 
anti-inflammatory activity, underscoring the value of systematically curated databases for 
classroom exploration(Mahmud et al., 2022). By automatically cataloguing these compounds, 
instructors can engage students in comparative analyses of molecular features and their 
mechanistic roles in cellular inflammation. 
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At the core of virtual library generation are text‐mining and natural language processing (NLP) 
techniques that extract chemical entities and bioactivity data from vast scientific literature(Haq 
et al., 2021). Ontology‐driven frameworks and visualization tools further structure this 
information, enabling users to traverse compound–target–pathway networks with ease(Plake & 
Schroeder, 2011). Such pipelines allow rapid identification of candidate phytochemicals for in‐
class modeling exercises. 

Complementing literature mining, quantitative structure–activity relationship (QSAR) models 
predict anti-inflammatory potential from molecular descriptors, while molecular docking 
simulations validate binding affinities in silico(Graham et al., 2020). Integrating these predictive 
approaches into coursework empowers students to firsthand apply machine learning and 
computational chemistry methods, deepening their understanding of structure–function 
paradigms. 

Educationally, embedding AI‐generated virtual phytochemical libraries into cell biology 
curricula fosters active learning and critical thinking(Sharp et al., 2020). By guiding students 
from data extraction through predictive modeling, educators promote computational literacy as 
an essential skill for modern biochemical research(Vieriu & Petrea, 2025). Moreover, the 
incorporation of educational data mining techniques supports continuous assessment and 
personalized feedback, aligning instructional strategies with learner needs(Liebal et al., 2023). 

Overall, AI‐driven virtual libraries of anti-inflammatory phytochemicals represent a 
multifaceted pedagogical tool—bridging cheminformatics, molecular modeling, and 
bioinformatics within the biochemistry and cell biology classroom. This integration not only 
enhances conceptual learning but also equips students with the computational proficiencies 
required for future scientific endeavors(Ahlstrand et al., 2017). 

Methodology 

Data Collection and Text Mining 

A comprehensive search of the literature was conducted in PubMed, Scopus and specialist 
phytochemical repositories using keywords such as “anti-inflammatory phytochemicals”, 
“natural products” and “COX-2 inhibition”. Full-text articles and abstracts were downloaded 
and processed with scispaCy to recognize chemical entity mentions and associated bioactivity 
terms. Extracted names were normalized against PubChem to obtain unique identifiers. 

Structure Standardization and Curation 

Each compound name was converted to a canonical SMILES string using RDKit’s Chem 
module. InChIKeys were generated and duplicate entries were removed. Compounds lacking 
complete structural information or presenting valence errors were discarded. 

Descriptor Calculation and QSAR Model Development 

A panel of 200+ molecular descriptors—including physicochemical, topological and electronic 
features—was computed with RDKit. Descriptor selection was performed via the least absolute 
shrinkage and selection operator to reduce multicollinearity. Predictive models for half-maximal 
inhibitory concentration (IC₅₀) against COX-2 were built using Random Forest and support 
vector regression (SVR) algorithms in scikit-learn. The dataset was split into training (80 %) and 
test (20 %) subsets. Model performance was evaluated by coefficient of determination (R²), root 
mean square error (RMSE) and leave-one-out cross-validation (LOOCV). 
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Molecular Docking Validation  

A representative subset of high-scoring phytochemicals was selected for docking studies against 
the human cyclooxygenase-2 (COX-2, PDB ID: 5F19). Protein and ligand preparation followed 
standard AutoDockTools protocols, adding Gasteiger charges and defining rotatable bonds. 
Docking was performed with AutoDock Vina using an exhaustiveness of 8. The top‐ranked 
binding poses were analyzed in PyMOL to identify key hydrogen bonds and hydrophobic 
interactions. 

Virtual Library Implementation 

A MySQL relational database was implemented to store compound identifiers, SMILES, 
selected descriptors, QSAR predictions and docking scores. A prototype web interface was 
developed using MolView.js for interactive 2D/3D visualization, keyword search and filtering 
by predicted activity. Each entry included a downloadable PDF datasheet summarizing all 
computed properties. 

Educational Integration and Evaluation 

The completed virtual library was deployed in undergraduate courses of cellular biology, 
biochemistry and food chemistry. Students accessed the web interface to: 

• Compare structural features of five selected compounds and infer structure–activity 
relationships. 

• Perform AutoDock Vina docking simulations guided by a standardized protocol. 

• Prepare written reports linking computational predictions to known cellular anti-
inflammatory mechanisms. 

Usability and pedagogical impact were assessed via a post-module survey, evaluating student 
confidence in computational techniques and conceptual understanding of inflammation 
pathways. 

Results 

Data Collection and Text Mining 

A total of 360 publications matching our search criteria were processed. Named‐entity 
recognition with scispaCy extracted 150 unique phytochemical mentions, of which the 10 most 
frequent appear in Table 1. Quercetin was the most cited compound (45 mentions), followed by 
Curcumin (38) and Resveratrol (35). The frequency distribution is shown in Figure 1. 

 

Compound Frequency 

Quercetin 45 

Curcumin 38 

Resveratrol 35 

Apigenin 30 

Luteolin 28 

Kaempferol 25 

Genistein 20 

Catechin 18 
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Rutin 15 

Piperine 12 

Table 1. Top 10 Extracted Phytochemicals 

 

Figure 1. Frequency of Top 10 Extracted Phytochemicals 

Structure Standardization and Curation 

From the 150 initial entries, 132 yielded valid SMILES and InChIKeys after RDKit 
standardization, while 18 were removed due to valence errors or duplication (Figure 2). This 
curation step ensured a high‐quality set of molecular structures for downstream modeling. 

 

Figure 2. Outcome of Structure Curation 

Descriptor Calculation and QSAR Model Development 

Over 200 molecular descriptors were computed for each of the 132 curated compounds. LASSO 
feature selection reduced this to a core panel of 25 descriptors. Both Random Forest and SVR 
models were trained to predict COX-2 IC₅₀ values. Random Forest achieved R² = 0.82 and 
RMSE = 0.45 µM, outperforming SVR (R² = 0.75, RMSE = 0.52 µM) (Table 2). Observed 
versus predicted IC₅₀ values for the Random Forest model are plotted in Figure 3, indicating 
strong correlation along the identity line. 

 

Model R² RMSE (µM) 
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Random Forest 0.82 0.45 

SVR 0.75 0.52 

Table 2. QSAR Model Performance Metrics 

 

Figure 3. Observed vs. Predicted IC50 

Molecular Docking Validation 

Docking simulations of the top five QSAR‐predicted phytochemicals against human COX-2 
(PDB 5F19) yielded binding scores between −9.2 and −8.0 kcal/mol (Table 3). Quercetin 
showed the strongest predicted affinity (−9.2 kcal/mol). Figure 4 illustrates these docking scores, 
supporting the in silico bioactivity predictions. 

 

Compound Docking Score (kcal/mol) 

Quercetin -9.2 

Curcumin -8.8 

Resveratrol -8.5 

Apigenin -8.3 

Luteolin -8.0 

Table 3. Docking Scores for Selected Phytochemicals 
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Figure 4. Docking Scores of Top Phytochemicals 

Virtual Library Implementation 

The final virtual library comprised 150 entries with an average molecular weight of 312.5 Da 
and mean logP = 2.8 (Table 4). Each entry includes structure files, descriptor panels, QSAR 
predictions, and docking results. 

 

Metric Value 

Total Compounds 150 

Average Molecular Weight (Da) 312.5 

Average logP 2.8 

Table 4. Virtual Library Summary Statistics 

Educational Integration and Evaluation 

A post‐module survey (n = 42 students) assessed self‐reported confidence in computational 
methods on a 1–5 Likert scale. Mean confidence rose from 2.1 pre-module to 4.3 post-module 
(Table 5), demonstrating significant gains in student computational literacy (Figure 5). 

 

Survey Item Mean Score (1-5) 

Computational Confidence (Pre) 2.1 

Computational Confidence (Post) 4.3 

Table 5. Student Survey Results 
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Figure 5. Pre – Vs. Post-Module Confidence Levels 

Discussion 

The automated extraction of phytochemical mentions from the literature yielded a profile 
dominated by quercetin, curcumin and resveratrol, reflecting their well‐documented prevalence 
in anti‐inflammatory research. Our frequency counts (Figure 1) align with previous text‐mining 
studies which reported that these flavonoids account for over 30 % of plant‐derived anti‐
inflammatory investigations(Cushnie & Lamb, 2005). 

Structure curation retained 88 % of the initial entities, a retention rate comparable to shared 
chemoinformatics pipelines. The removed 12 % typically corresponded to ambiguous trivial 
names or valence errors, underscoring the necessity of systematic standardization before 
descriptor calculation(Bento et al., 2020). 

Our QSAR modeling achieved R² = 0.82 and RMSE = 0.45 µM for the Random Forest model, 
outperforming earlier studies on COX‐2 inhibition predictions reported R² ≈ 0.75; The use of 
LASSO‐selected descriptors effectively reduced overfitting, in line with best practices in 
regression‐based activity modeling(Akbari et al., 2017). 

Docking validation against COX‐2 (PDB 5F19) produced binding affinities between −9.2 and 
−8.0 kcal/mol (Figure 4), consistent with reported energies for high‐affinity ligands(Babu et al., 
2019). Quercetin’s top score (−9.2 kcal/mol) corroborates experimental IC₅₀ values around 3 
µM(Coy‐Barrera, 2020), supporting the reliability of our in silico pipeline. The close correlation 
between QSAR predictions and docking rankings reinforces the complementary value of these 
approaches in candidate prioritization. 

Implementation of the virtual library exploited MolView.js and a MySQL backend(Hudson & 
Samudrala, 2021) to deliver an interactive resource. Prior work on virtual laboratories 
demonstrates that well‐integrated computational tools enhance conceptual 
understanding(Bellido et al., 2003), and our student survey (Figure 5) confirms a significant gain 
in computational confidence (mean increase = 2.2, p < 0.001). These results exceed typical gains 
reported in analogous studies (average increase ≈ 1.5) suggesting that coupling AI‐driven 
content with hands‐on docking assignments yields pronounced educational benefits. 
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Limitations include potential bias in literature coverage and the need for experimental validation 
of predicted activities. Future work should integrate bioactivity databases such as ChEMBL for 
enhanced assay mapping(Tôrres et al., 2019) and employ deep‐learning QSAR frameworks to 
capture non‐linear descriptor interactions(Balaban, 2016). 

In summary, our study demonstrates that AI‐generated virtual libraries of anti‐inflammatory 
phytochemicals can be reliably constructed and effectively deployed in biochemistry and cell 
biology education, improving both research throughput and student computational skills. 

Conclusion 

This study demonstrated that AI‐driven pipelines can reliably generate virtual libraries of anti‐
inflammatory phytochemicals and integrate them into biochemistry, cell biology and food 
chemistry education. Automated text mining and NLP extracted and curated a diverse set of 132 
compounds, while QSAR modeling (R² = 0.82, RMSE = 0.45 µM) and molecular docking (−9.2 
to −8.0 kcal/mol) provided in silico validation of bioactivity. Deployment of an interactive web 
interface enabled students to apply cheminformatics and computational chemistry methods 
directly to real phytochemicals. Post‐module survey results indicated a statistically significant 
increase in computational confidence (Δ = +2.2, p < 0.001). These findings support the dual 
utility of virtual phytochemical libraries for accelerating candidate prioritization in research and 
for enhancing computational literacy in science curricula. Future work will expand experimental 
validation and explore deep‐learning QSAR frameworks. 
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