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Abstract 

Increasingly advanced cyber threats pose a challenge for cybersecurity professionals, and C2 communications detection and 
prevention remain an extremely critical issue. Polymorphic malware and encrypted channels support modern adversaries in stealthy 
control of compromised systems. Redundant signature-based detection cannot be effective in those cases. Therefore, in this paper, 
we present a novel framework based on deep learning and real-time classification for malicious C2 traffic detection. More 
specifically, an MLP model is trained with a custom-designed dataset of network traffic to efficiently discriminate between legitimate 
traffic and allegedly malicious C2 packets. In addition to the MLP, there is also a real-time classification system based on behavioral 
analysis of SSL certificates and Nmap script outputs in order to reveal Metasploit and Cobalt Strike threat types. Extensive testing 
of self-collected data validates the excellent performance of the detection innovation with 99% detection rate of C2 threats and 
99.9% correct classification in specific frameworks. Behavioral assessments and deep learning come together to form a powerful 
and scalable defense against a new breed of cyber threat. 

Keywords: Command and Control (C2) Detection, Deep Learning in Cybersecurity, RealTime Threat Classification, Network 

Traffic Analysis. 

 

Introduction 

In the progress of cybersecurity from the concept of sabotaging cognitive functions to falsifying 
the information about the events that took place, well-known examples keep emerging, such as 
(Zaid & Garai, 2024; Zeadally et al., 2020). It is one of the eminent avian targets for any 
detection or prevention treatment with regard to Command or Control (C2) communications, the 
other side to this malware-driven intrusion (Ghafir et al., 2018; Caviglione et al., 2020). This 
type of communication allows an adversary to organize and maintain control over a 
compromised system, allowing that system to carry out malicious activities (Ashfaq et al. 2022; 
Bastiaansen et al., 2020; Eisenberg et al., 2018). The increasing rate and complexity of such 
attacks invoke greater and more urgent demand to develop countermeasures (Ferdous et al., 
2023; Obi et al., 2024). The customary signature-based detection techniques, which rely on 
signature or predefined patterns, have been found to be impotent against modern malware (Malik 
et al., 2023; Torres et al., 2023). Increased encryption has concealed malicious activity, making 
the situation worse, as has improved polymorphic malware, which is continuously mutated to 
circumvent detection (Akhtar & Feng, 2022; Aslan & Samet, 2020). 
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Modern malware, indeed, shows changes in the behavior and evasive strategies that have only 
complicated the job of malware detection based only on classical signatures (De Gaspari et al., 
2022; Geng et al., 2024) and exemplify the meaning of evasiveness itself-, invasive behaviours, 
looking for newer solutions that could adapt to a dynamic threat landscape. Consequently, efforts 
are now directed to using deep learning and real-time classification for the purpose of the making 
of C2 communications detection. Deep learning has shown to be the most suitable part of 
machine learning that allows for the successful analysis of complex patterns and anomalies, real-
time classifications, so that malicious actions can be captured as opposed in a continuous 
classification. It is the convergence of this that can possibly change the world of cyber by 
obtaining a dynamic and scalable solution to the ever-evolving threat of cyber. 

Recent breakthroughs in deep learning have enabled the development of advanced models, 
capable of making an effective distinction between genuine and malicious network traffic. Their 
application in the detection of C2 communications has shown some promising results with 
several evidence-based studies demonstrating the power of deep learning towards the 
identification of threats. However, most of these studies have mainly concentrated on the 
analysis of offline data, sidelining what is really critical in real-time detection and classification. 
Thus, to realistically counter modern cyber threats, one needs to establish solutions for analyzing 
network traffic in real-time whilst identifying and classifying the malicious activity with the 
least latency.  

Cyber threats have grown astronomically in the past years, increasing in sophistication among 
attack vectors along with the dissemination and proliferation of advanced malware. What gives 
current malware the most concerning edge over their predecessors would be the use of 
Command-and-Control (C2) systems that allow adversaries to access and take control of the 
compromised networks remotely for malicious activities such as data exfiltration, ransomware 
deployment, or espionage. Such covert communication channels increasingly endanger 
organizations by evading traditional security countermeasures, thereby demonstrating the 
importance of embedding detection mechanisms with much more adaptability. Multiple 
protocols are used in C2 systems, such as HTTP or DNS, along with encrypted channels: this 
helps them exploit the legitimate traffic to evade detection. Encryption protocol deployments 
like Transport Layer Security (TLS) act as an added burden to C2 activity detection, as it 
encrypts the contents of the communication packet. Therefore, the existing security measures, 
such as signature-based and rule-based systems, often fail against modern polymorphic and 
evasive malware. This ever-changing threat landscape emphasizes the need for advanced 
methodologies that would support behavioral analysis and real-time detection.  

HTTP servers were being acknowledged as an excellent platform of preferred means of web 
communication employed by a broad spectrum of threat carriers to disguise their entire activities 
over the internet. The technicalities of HTTP itself, together with its wide acceptance (which 
very few firewalls normally block), add as an entanglement to the identification of malicious 
communications amidst the high volume of HTTP traffic. And so, both Botnets and Post-
exploitation tools have their C2 servers propagate on HTTP, available to a vast majority of 
machines. Usually, an infected host picks particular HTTP GET requests from a predefined 
destination C2 server and executes any planned tasks as mentioned in the C2 server's response 
(Shah, 2004). 

As distinctive signatories thereunder, detection of such malicious C2 servers has practically 
gained paramount significance for teams gearing up for the better defense of any sort against 
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named adversaries. Detection of C2 communications remains the most significant defense to 
protect networks and minimize damage resulting from cyberattacks, including theft of data, 
propagation of malware, and remote control of affected systems.  

Historically, signature-based methods for identifying C2 activity have involved drawing up 
predefined patterns or signatures from historical threat intelligence (Ghafir et al., 2018). Security 
experts studied various malicious behaviors and turned those into unique identifiers or 
fingerprints (Novo & Morla, 2020). Security systems, such as antivirus software and intrusion 
detection systems, implement these signatures to match them against activities involved in 
scanning network traffic or files. While useful with past threats, these approaches have some 
disadvantages since they are signature-dependent and may produce false positives or negatives. 
Signature databases require regular manual updating to keep pace with the threats emerging. 
Nonetheless, signature-based methods in traditional format have often fallen short of C2 
detection for various reasons: they work only against threats that are already known and have 
trouble assessing novel or evolving C2 tactics that do not have established signatures. 
Additionally, detection based on signatures often falsely identifies benign activities as threats or 
misses more opportunistic ones, sometimes called polymorphic or obfuscating C2 traffic. Static 
by nature, signatures do not adapt to novel attacks that evolve quickly; thus, there is a strong 
need for more advanced detection schemes, potentially behaviorally based (Khan et al., 2019; 
Ghafir et al., 2018).  

An advanced technique for C2 activity detection is deep learning which mainly uses the 
differentiating power in analyzing data pattern-the recognition of very complicated patterns. 
This normally involves training deep neural network models on large datasets controlled for all 
normal network behavior instances and C2 communication instances (Catillo et al., 2023). 
Important features are extracted, including network traffic pattern and packet content, for 
representation. The neural network architecture is thus carefully designed to include input layers, 
hidden layers to learn the representations, and an output layer for normal or C2 classification. 
The training process refines the model's internal weights via supervised learning and attempts to 
minimize the deviation between predicted and actual labels. After training, the model has the 
capability to perform inference on the unseen data by inspecting incoming network traffic or 
communication patterns to differentiate normal activities from C2 ones. Because they learn 
continuously and therefore can adapt to emerging threats, deep learning models are well-suited 
to address the dynamics and changes in various C2 tactics (Catillo et al., 2023). The self-
generated dataset was used for this research because deep learning in C2 detection hinges on the 
quality and representativeness of training data, the choice of features, and the architecture of the 
neural network.  

This paper discusses an in-depth paradigm shift through different sets of explanations on 
efficient use of deep learning, real-time classification, and new framework architecture to detect 
camouflage command and control (C2) communication communication.  This framework is built 
on deep learning from Multi-Layer Perceptron (MLP) using real-time classification in such a 
way that it seeks only to distinguish malicious C2 packets from legitimate ones. The MLP model 
was custom trained in a dataset generated from network traffic, while the behavioral-based real-
time classification component uses SSL certificate patterns and outputs of Nmap scripts to 
identify Metasploit and Cobalt Strike frameworks' related wrongdoings. Integrating the two 
major techniques, this research focuses on providing a start-to-finish solution against advanced 
persistent threats with an elitist and highly scalable framework in detection and prevention of 
C2 communication.  
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This paper is structured as follows: Section 1 describes the introduction of C2 in the cyber world 
and the role of deep learning in detection C2 and real-time C2 framework classification. In 
Section 2, the literature for C2 is given. Section 3 explains the proposed detection and 
classification model. In Section 4, model evaluation is presented with a comparison to showcase 
the efficacy. Section 5 presents the self-generated dataset. In Section 6, the experimental analysis 
is given with graphs for results. Finally, the paper ends with Section 7 presenting the conclusion 
and future work. 

Literature Review 

The Command and Control or C2 system is among the modern digital attack strategies that 
empower the enemy to collaborate with malicious attacks over invaded networks and endpoints 
(Leal et al., 2019). Research works have continued to explore, understand, detect and mitigate 
against C2 communications, with considerable effort from the community towards 
understanding the increasing sophistication in C2 systems. This section brings together the 
important findings in the literature, from the history of C2 systems through fundamental network 
concepts dependent on their ways of operation, to upcoming innovations towards both 
unencrypted and encrypted C2 detection. The importance of machine and deep learning 
techniques in amplifying the role of real-time detection to define an effective defense in future 
against identifying malicious activities is emphasized. 

Evolution of C2 Systems and Fundamental Networking Concepts  

The ubiquitous early C2 systems were simple to detect and disrupt because of their reliance on 
simple protocols and fixed infrastructures; however, modern C2 frameworks utilize 
sophisticated techniques for evading detection like dynamic IP address allocation schemes, 
covert communication channels, and domain generation algorithms (DGAs) (Gomes et al., 
2024). Such instruments and techniques are playing effective roles in hindering detection by 
masking malicious traffic within the legitimate traffic flows while using encryption to conceal 
the danger traffic content. To understand how C2 mechanisms work in real-life environments, it 
is natural to understand certain core concepts in networking. The OSI and TCP/IP models 
suggest a multi-layered approach, but the interest lies mainly in the Network (IP) and Transport 
(TCP/UDP) layers for C2 detection. While IP addresses can be likened to mailing addresses 
ensuring a unique identification of the endpoint, the transfer of data by either TCP or UDP 
implies reliable and connectionless, respectively (Al-Hisnawi & Ahmadi, 2016; Kuerbis & 
Mueller, 2020). Enabling packet header, payload, and signature thereby more sophisticated 
detection methods, Deep Packet Inspection (DPI) represents some of the basic detection methods 
truly at work. 

Unencrypted C2 Detection  

Traditionally, research focusing on infected C2 detection in unencrypted formats has 
concentrated mainly on the application-layer protocols such as HTTP. These security tools can 
also identify using source and destination ports, signatures of traffic, as well as content patterns, 
malicious flows that may use HTTP(S) as a cover channel. For instance, an attacker selects 
HTTP GET or POST requests for issuing commands, making them easy to detect with pattern-
based detection. Some examples are BitProb, Bodhish and Hubballi et al. (2020), which use 
probabilistic bit signatures to classify flows of traffic. In addition, there are also many port-based 
techniques, DPI, as well as machine learning algorithms, which have been extensively adopted 
for application-based analysis. They employ anti-spyware signatures in the NGFWs to identify 
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dynamic C2 operations that employed real-time changing IP addresses and looked legitimate 
domains (Salat et al., 2023). The NIDS employs a combination of anomaly detection, misuse 
detection, and specification-based analysis, in order to provide protection against known threats. 
Still, they face false positives and static signatures problems (Ghorbani et al., 2009).  

Significant research has explored how adversaries blend C2 communications with benign HTTP 
flows Al-Hakimi and Bax, 2020), prompting passive identification methods based on machine 
learning and feature extraction. Observing subtle abnormalities in HTTP header order, size 
distributions, and frequency has proven useful for distinguishing malicious from legitimate 
traffic, but these methods do not readily extend to encrypted scenarios.   

Encrypted C2 Detection 

The transition to TLS channels has increased much more the complexity in the detection of C2 
activities already. Signature-based methods as well as DPI as approaches that are effective for 
plaintext traffic lose complete visibility with encrypted payloads. Investigators have shifted their 
focus then to the analysis of TLS metadata such as certificate particulars, key lengths, and 
anomalies in handshakes to expose potentially malicious connections (Anderson et al., 2018). 
Beyond the need for TLS inspection are flow-based techniques statistically based on packet size, 
inter-arrival time, and number of retransmissions that have already been shown to be important 
in identifying suspicious talking patterns even in adversarial environments (Novo & Morla, 
2020). SSL-decryption approaches at network perimeters will restore visibility of contents but 
create huge overheads in resources and infringe on user privacy (Baldini et al., 2020; 
Rajasoundaran et al., 2024). Scarce still are blacklisting suspicious IPs or domains, while 
adversaries keep changing infrastructures or DGAs stay ahead of static lists (Salat et al., 2023). 

Behavior-Based Detection Using Machine and Deep Learning  

However, many researchers have gone to the extent of using behavior-based detection 
approaches, particularly machine and deep learning, to solve the problems associated with static 
and signature-based systems. By learning a model from traces of all benign and malicious traffic 
on a monitored network, the systems will then learn a way to detect subtle characteristics of C2 
communications (Shao et al., 2021; Shafiq et al., 2020; Tuan et al., 2020). The typical machine 
learning methods-Support Vector Machines, Decision Trees, Random Forests-have shown 
remarkable detection rates on well-known data sets like KDD'99 and N-BaIoT. In this sense, 
deep learning methods somewhat enhance the techniques for detection by automatically 
extracting and learning complex representation of features. CNNs and LSTMs have been used 
to boost detection rates for botnet detection with their performance being over 94% (Parra et al. 
2020). Anomalies can be detected by deep-autoencoders, which contain normal traffic patterns, 
at an accuracy of 99.7% (Apostol et al., 2021). All of these methods enable continuous learning, 
so they can be updated with new or evolved C2 tactics. Recently, several hybrid models 
combined rulebased heuristics with machine learning algorithms. As an integration of 
complexity of domain knowledge with data-driven insights, Vidhun and Kannimoola (2024) 
introduced a Random Forest-based behavioral filtering method for proactive C-cubed defense 
against threat options.  

Real-Time Detection  

Timely responses are the key, although post-hoc analyses prove to be successful in 
understanding the nature of the C2-driven attack. ElasticNet Regression Models (ENetRM) have 
shown that computations with low computational overhead could result in builds that accurately 
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distinguish malicious and benign traffic along with high precision, recall, and F1 scores in real-
time settings (Srinivasan & Deepalakshmi, 2023; Hussain et al.,2024). Similarly, BotDet Ghafir 
et al. (2018) also align the modular detection technology dealing with partial visibility and 
encryption and achieve a particular 82.3% true positive rate of 13.6%. Yet another burgeoning 
paradigm is formed by the self-supervised or semi-supervised that keep on adjusting in almost 
real-time. For example, Self-Supervised Intrusion Detection (SSID) frameworks attained 
detection accuracy at 99.83%, which is adaptable to shifting adversary behavior (Nakıp & 
Gelenbe, 2023). Much as they promise in terms of responses like real-time systems, they still 
suffer from all sorts of drawbacks, including those related to encryption, the computational 
expense, and false positives. 

Summary of Key Findings  

In general, the literature emphasizes the intricacy of C2 detection within modern networking 
environments. Indeed, while traffic analysis on the unencrypted plane and DPI techniques still 
work well, a shifting trend toward TLS-encrypted channels begs for backward methods to focus 
on metadata, network flow statistics, and behavioral indicators. Machine and deep learning 
models have greatly improved the detection rates against various scenarios, with a strong support 
of domain knowledge and feature engineering or selection. Nevertheless, real-time detection 
remains one major hurdle. A trade-off must be maintained between very high detection accuracy 
and latency, computation overhead, and the rate of false outside alarms. Therefore, the present 
study tries to corroborate these findings by putting forward the idea of combining deep learning 
models with behavioral analytics for on-the-fly detection and classification of malicious C2 
frameworks toward establishing a more robust and adaptive scheme for network defense. 

Materials and Methods 

The proposed method will consist of a deep-learning detection model and a real-time 
classification framework. The detection model examines network traffic to detect normal and 
malicious packets. Once traffic has been identified as malicious, it will then be classified for 
further analysis. The methodology for detecting and classifying Command-and-Control (C2) 
communication using deep learning involves a few steps and is illustrated in Figure 1: 

 

Figure 1. Proposed Detection and Classification Architecture 

Deep Learning Detection 

The deep learning architecture that has been used in this research is Multi-Layer Perceptron 
(MLP). Speaking within the framework of Command and Control (C2) detection, MLP model 
trains itself upon many network traffic packets such that each packet has to be classified either 
as legitimate or that of a C2 malicious packet. A preliminary stage where cleanliness is assured 
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of the data is done, whereby an integrity check of the dataset is performed mostly by identifying 
missing values showcased in the DataFrame. The steps are summarized in the following action:  

Feature Extraction and Labeling: Relevant features for the study, such as ’port,’ 
’Country_name,’ ’asn,’ ’isp,’ and ’organization,’ are selected from the dataset. Corresponding 
labels, called ’ labels,’ are then identified, providing the foundation for supervised learning. 
These labels indicate whether the network activity is benign or malicious. By extracting these 
labels, we set the stage for the supervised learning task, where the model will be trained to 
predict the labels of new, unseen data based on the patterns it has learned from the labeled 
training data.  

Data Splitting: The dataset is divided into training and testing subsets using the train_test_split 
function. A test size of 20% is specified, with a fixed random state (42) to ensure reproducibility. 

Preprocessing: The dataset contains both numerical and categorical features. Specifically, ’port’ 
is treated as a numerical feature, while ’Country_name,’ ’asn,’ ’isp,’ and ’organization’ are 
categorical features. Preprocessing steps are applied to these features using specialized 
pipelines: numerical features are scaled using StandardScaler, and categorical features are 
encoded using OneHotEncoder. These transformations are integrated into a ColumnTransformer 
to streamline their application. 

Model Definition: The MLP model is defined using the MLPClassifier, with a single hidden 
layer consisting of 100 neurons. The model is configured to run for a maximum of 1,000 
iterations, with a fixed random state (42) to maintain consistency across runs.  

Pipeline Construction: A complete pipeline is constructed using the Pipeline class, which 
incorporates both the preprocessing steps and the MLP classifier. This modular design 
ensures the consistency and reproducibility of the workflow, as the same sequence of operations 
is applied during both training and testing phases.  

Model Training: The pipeline is trained on the training dataset using the fit method. The 
preprocessing steps are applied during training, followed by fitting the MLP classifier to the 
processed data. 

Prediction: The trained model is then used to predict the previously unseen test dataset.  

The performance of the model is evaluated using a range of metrics, including accuracy, 
precision, recall, and F1-score for each class. These metrics comprehensively assess the model’s 
effectiveness in distinguishing between legitimate and malicious network traffic. 

Real-Time Classification  

This methodology follows a behavioral analysis approach by interpreting the behaviors shown 
by SSL certificates and Nmap script outputs. The basis of this approach is that diverse patterns 
are usually demonstrated by different Command and Control (C2) frameworks, and behavior 
recognition is therefore a useful mechanism for accurate classification. The classification 
approach described in the paper focuses on the detection of C2 frameworks using distinct 
patterns from two popular ones, namely, Metasploit and Cobalt Strike. This is done through the 
means of SSL certificate inspection and Nmap script execution that serve to derive features 
indicative of each of the frameworks. The analysis begins with the observation of the SSL 
certificate for a connection in question. The main interest is put into the Common Name (CN) 
field where anything like “MetasploitSelfSignedCA” would definitely point toward the 
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Metasploit framework. This fine-grained examination of SSL certificates increases classification 
accuracy through the identification of Metasploit C2 instances based on SSL signature attributes. 
If the SSL certificate does not demonstrate a characteristic specific to Metasploit, the 
methodology conducts a further inspection using the Nmap tool. A notable approach within this 
methodology involves running the grab_beacon_config_old script against the intended target IP 
address and port, with the parsing of any returned output. Indicators such as "BeaconType:" 
being present in the output are taken note of. This keyword-based view emphasizes built-in 
configurations that characterize Cobalt Strike C2 instances. If none of the SSL Certificate or 
Nmap Script Output matches any of the Metasploit or Cobalt Strike pattern signatures, the 
investigated packet would be considered as "others". Regardless, it should act as a safety net, 
covering all other possibilities and avoiding false positives. This classification methodology 
embraces both the analysis of SSL certificates and Nmap scripts, enabling it to recognize distinct 
C2 frameworks. It effectively differentiates Metasploit from Cobalt Strike by means of 
behavioral characteristics and configurations that are peculiar to each, thereby including any 
frameworks unidentified hitherto. The more structured nature that this approach uses enhances 
its precision for real-time classification adaptation.  

For example, if the Nmap script output has not been previously grouped, the packet is classified 
into "other frameworks" and flagged first, before allowing for the more detailed manual 
examination done through Metasploit or Cobalt Strike signature matching, focusing on the 
groups where most of the possible matches have already been found.  

Model Evaluation 

The proposed deep-learning model is evaluated, this time very stringently, using the N-BaIoT 
dataset as its benchmark. This dataset was developed especially for evaluating IDS in an IoT 
environment with a complete collection of network activities. The results are tediously 
summarized in Table 1: greatly boosting credibility and respect for the suggested method 
compared to the results obtained by Castillo et al. (2023). The dataset from N-BaIoT 
subsequently serves as a quality basis on which to assess the detection capabilities of the 
proposed model. As practical performance measures for comparing models, namely, those 
proposed in this paper and those seen by Castillo et al., are values for F1 score, recall, and 
precision. These performance metrics exhibit the underscore for which a model could turn 
positive; false positives get minimized in their own right, thus contributing to the complete 
evaluation of the model's predictive efficacy and trustworthiness. Table 1 provides comparisons 
of performance results across different devices of the N-BaIoT dataset. The proposed model 
demonstrates an even better performance in every device, showing almost 100% for F1 scores, 
recall, and precision. These results prove the model's robustness and dependability in 
differentiating malicious traffic from benign activities. Recall scores were considerably high, 
which highlights the ability of the model to find true positives effectively; the precision score 
also indicated there are very few false positives. 

 

Device 

No 
F1 Recall Precision F1 Recall Precision 

1 1.0000 1.0000 1.0000 0.8861 0.7955 1.0000 

2 0.9976 0.9955 0.9998 0.5192 0.3506 1.0000 

3 1.0000 1.0000 1.0000 0.8616 0.7568 0.9999 

4 1.0000 1.0000 1.0000 0.8796 0.7851 0.9999 
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5 1.0000 1.0000 1.0000 0.8423 0.7276 1.0000 

6 1.0000 1.0000 1.0000 0.8486 0.7371 0.9999 

7 1.0000 1.0000 1.0000 0.8621 0.7577 0.9999 

8 1.0000 1.0000 1.0000 0.5239 0.3549 1.0000 

9 0.9995 0.9993 0.9997 0.8661 0.7639 1.0000 

Table 1. Models’ Performance Comparison Proposed Model Baldini et al. (2020) ’s Model 

The model proposed by Catillo et al. (2023) performs with less performance variability. The F1 
scores, recall, and precision values of its performance demonstrated large variation across the 
devices. In some cases, specifically in terms of F1 score and recall values considerably lower 
than those of the proposed one, Catillo et al. (2023) 's model performed worse. For instance, it 
was demonstrated that Device 2 had an F1 score of 0.5192 and an associated recall of 0.3506 
under the scrutiny of Catillo et al. (2023) compared to an F1 score of 0.9976 and a recall of 
0.9955 under the proposed approach. This downward trend was observed in other devices as 
well, showing that Catillo et al. (2023) had difficulty providing consistent performance. The 
consistently near-perfect scores achieved by the proposed model in all metrics strongly suggest 
a good trade-off between precision and recall, critical to reducing false alarms and enhancing 
detection. These findings suggest that the model can be applied in real-world IoT environments, 
where reliable detection of malicious activities is requisite for ensuring security and operational 
stability. The results suggest that the proposed model is significantly superior to that of Catillo 
et al. (2023) in terms of predictive accuracy and reliability overall. This improvement in 
performance signifies the approach's capability to address some of the peculiarities of IoT 
security. This makes a strong case for its deployment in real-time detection systems. 

Dataset 

The data set of interest for this research was harvested from Shodan, a search engine for internet-
connected devices. While Shodan offers a large-scale repository of publicly accessible network 
servers and services, it does act as an almost irreplaceable resource for conducting research in 
various facets of cybersecurity. Data collection from the Shodan platform was carried out 
programmatically in Python via the Shodan API, providing a handy interface for interfacing with 
the search engine. Recognition of Command and Control (C2) servers in Shodan had to dig deep 
into certain malware networking behaviors and the specific distinguishing characteristics of C2 
servers themselves. Searching for these was centered on two common frameworks: Cobalt Strike 
and Metasploit. 

Cobalt Strike Identification  

Cobalt Strike is a legitimate penetration testing tool frequently repurposed by threat actors to 
establish C2 communications. Several techniques were employed to detect Cobalt Strike servers 
within Shodan’s dataset:  

• Product Name Match: Queries were constructed based on the product name, Cobalt 
Strike Beacon.  

• SSL Certificate Serial Number: Searches targeted SSL certificates with a specific 
serial number, such as 146473198.  

• Hash Matching: Queries filtered results based on known hashes associated with Cobalt 
Strike, focusing on port 50050.  
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• JARM Fingerprinting: SSL JARM fingerprints were utilized to identify distinct server 
profiles.  

• Common Name Analysis: SSL certificates containing the common name foren. Zik 
was flagged as a potential Cobalt Strike instance.  

Metasploit Identification 

Metasploit, another prominent penetration testing framework, was similarly scrutinized to 
identify C2 infrastructure. The search methodology targeted specific SSL certificate 
characteristics:  

• SSL String Matching: Searches identified certificates containing the string Metasploit-
SelfSignedCA. 

 Dataset Composition  

The resulting dataset comprises a substantial collection of 682,864 network records from 
Shodan. These records encapsulate diverse features essential for analyzing and characterizing 
network traffic. Key features included in the dataset are:  

• IP addresses.  

• Ports.  

• Country names.  

• Autonomous System Numbers (ASN).  

• Internet Service Providers (ISPs).  

• Organizational information.  

The dataset encompasses various server types: Command and Control (C2), FTP, SSH, Telnet, 
Mail, DNS, Web, VPN, Windows, and Linux. This diversity ensures a comprehensive 
representation of network environments, aiding in developing and evaluating deep learning 
models for real-time detection of malicious C2 communications. 

Results 

An experiment was designed to test the deep learning model's effectiveness for real-time 
detection of C2 communications. The tests were conducted under two popular C2 frameworks - 
Cobalt Strike and Metasploit. Model performance was assessed based on various metrics such 
as precision (P), recall (R), accuracy, F1-score, among others, which elaborated categorically on 
the model's classification capacity. True positives (TP) and true negatives (TN) exemplify the 
instances that have been correctly classified while misclassification errors consist of false 
positives (FP) and false negatives (FN). Recall more precisely predicts the value of TP over the 
total actual positives (TP + FN), whereas precision is given as the value of TP over total predicted 
positives (TP + FP). The false positive rate (FPR) represents the last important measured variable 
indicating the amount of identified false positives versus the total number of instances being 
negative in the corpus being tested. The F1 score, a balanced metric, is the harmonic mean of 
both precision and recall. These metrics are derived through the following formulas: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 x
𝑃𝑥𝑅

𝑃 + 𝑅
 

The results for C2 detection tasks are summarized in Table 2. The model demonstrated high 
performance across all evaluation metrics. For detecting non-C2 activities (Class 0), the model 
achieved a precision of 0.95, a recall of 0.95, and an F1-score of 0.95. C2-related activities (Class 
1) exhibited even stronger performance, with a precision of 0.99, a recall of 1.00, and an F1-
score of 1.00. The overall accuracy of the model was measured at 99.15%. 

 

Metric Non-C2 (Class 

0) 

C2 (Class 1) Macro Avg Weighted 

Avg 

Precision 0.95 0.99 0.97 0.99 

Recall 0.95 1.00 0.97 0.99 

F1-Score 0.95 1.00 0.97 0.99 

Accuracy 0.9915    

Table 2. Proposed Model’s Result 

An analysis of detected C2 activities revealed that 61.8% of instances were associated with the 
Cobalt Strike framework, highlighting its significant presence as a potential threat. Furthermore, 
12.7% of the instances corresponded to activities linked with the Metasploit framework. 
Interestingly, 25.5% of the detected instances were classified under "Other C2 Frameworks," 
indicating a diverse range of network behaviors outside the scope of the defined Cobalt Strike 
and Metasploit categories. This distribution is illustrated in Figure 2. 

 

 

Figure 2. Classification Result 

Cobalt Strike, 

61.80%Metasploit, 

12.70%

Other Framework, 

25.50%
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The observed high performance of the model in terms of precision, recall, and F1-score 
underscores its capability for effective real-time detection of C2 communications. Additionally, 
detecting diverse C2 frameworks suggests the model’s robustness in identifying emerging 
threats, making it well-suited for deployment in dynamic and evolving cybersecurity 
environments. 

Discussion 

At 99.15% overall accuracy, the exception accrual to the detection model suggests it recorded 
impressive effectiveness beyond detection of C2 communications, yet the algorithm lacks the 
ability to flag suspicious C2 communications.. Precision values recorded were extremely high, 
with 95% for non-C2 (class 0) and 99% for C2 (class 1) instances. The prediction such that a 
model predicts non-C2 or C2 is right about 95% and 99% of the times, respectively. Such 
precision emphasizes the robustness of the model against false positives which is very important 
in cybersecurity applications since false alarms can bring inefficiencies and large costs. 
Moreover, the recall metrics indicated an outstanding performance by the model - especially in 
C2 (class 1), where it achieved 100% recall, signifying it correctly identified all instances. This 
means that the model detected every C2 instance without overlooking any, covering malicious 
activities comprehensively. The model was also able to exclude benign traffic correctly as for 
non-C2 instances; the recall value was also high. The F1 score, which is a harmonic mean of 
precision and recall, has also emphasized much on the model's effectiveness with 95% for non-
C2 and absolutely perfect 100% for C2 (see Figure 3). On a collective scale, these metrics 
indicate the model's capability to strike a balance between precision and recall. 

 

Figure 3. Result Confusion Matrix 

Further evaluation of the model performance was made on the ROC curve, revealing its position 
near the upper-left corner, which indicates greater sensitivity and much fewer false positives. 
An AUC value of 0.99 shows that the model was exceptionally able to separate cases of positives 
(C2) and negatives (non-C2) (see Figure 4). This almost perfect AUC value further strengthens 
the model's viability for usage in real time where correct classification is very important. The 
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results further reiterate the ability of the model to predict both classes accurately even when 
faced with inherent imbalanced class distributions. The macro and weighted averages 
consistently validated the overall performance and highlighted balanced model capabilities 
across a wide range of evaluation metrics. The capability of the model in a powerful fashion was 
also observed in the pinpointing of specific instances concerning various C2 frameworks, 
especially Cobalt Strike and Metasploit. As a whole, these frameworks find application in APTs 
and red teaming, which makes their detections critical to proactively defending. Strong 
precision, recall, and accuracy values mean that the model provides security teams with a reliable 
instrument for real-time monitoring and offensive operations mitigation, accomplishing the 
detection and classification of malicious activity concerning the C2 communication with 
maximum efficiency.  

 

Figure 4. Receiver Operating Characteristic (ROC) Curve 

The results presented in this study demonstrate the practical viability of leveraging deep learning 
models for real-time detection of C2 communications. Future work will enhance the model’s 
interpretability, enabling analysts to gain insights into the decision-making process and 
improving resilience against adversarial evasion techniques. 

Conclusion  

The research presented here deals with the current problems related to Command and Control 
(C2) communications in modern cybersecurity, thereby requiring improved detection methods 
to meet increasingly sophisticated cyber challenges. The traditional signature-based methods 
that were previously effective have now become inadequately supportive against polymorphic 
malware and encrypted communications. This research thus proposes a new framework that 
integrates deep learning with real-time classification mechanisms to improve threat detection 
capabilities.  

The Multi-Layer Perceptron (MLP)-based deep learning model that is proposed proves to be a 
high performer, recording 99% accuracy in identifying malicious C2 packets floating within 
network traffic. Another area in which the real-time classification mechanism found in this 
framework excels is in classifying patterns associated with top C2 frameworks, Cobalt Strike, 
and Metasploit, with accuracy scores as impressive as 99.9%. Such results prove the usefulness 
of applying deep learning techniques along with behavioral analysis to meet and handle the new 
evolving evasion strategies that are used by modern malware.  



Aljammaz et al. 425 

posthumanism.co.uk 

 

 

The key aspects of this study are custom dataset creation, thorough model performance 
evaluation, and validations based on real-world traffic simulation. It is a dynamic and scalable 
framework that detects malicious activity in real time as it focuses on SSL certificate patterns, 
extracting data using outputs from Nmap script. Such advances have been made in the 
transformation of static methods of detecting into proactive defensive capabilities, which stand 
to be far much better than the conventional static detection models. The findings presented in 
this paper demonstrate the need for future research in machine learning-based data-driven 
approaches in cybersecurity. However, as the threat landscape is continuously changing, 
ongoing research is needed to refine detection models and improve their abilities. Future work 
should also continue to explore other machine learning architectures, integrate anomaly 
detection techniques, and extend the dataset scope to emerging C2 frameworks and tactics. This 
research has made a major contribution toward building resilient and robust systems for 
cybersecurity. Bridging deep learning and real-time threat analysis will make strides in building 
scalable, intelligent, and proactive defense mechanisms. Collaborative efforts within the 
cybersecurity community will be important to sustain progress and address future challenges, 
ensuring robust protection against increasingly complex cyberattacks. 
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