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Abstract 

This paper is concerned with the global weak solution for charge transport DNA model with vibrational and rotational coupling 
motion. For that we use the theory of semigroup according to rewrite in vector form the system obtained from the dynamics of the 
Peyrard-Bishop model for vibrational motion of DNA dynamics. We consider an abstract initial value problem, which we show that, 
under suitable assumptions the system supports a single global weak solution satisfying the given initial condition, for that  one, we 
consider the Sobolev spaces which will solve the Cauchy problem. We present our result developed in Matlab for the calculation of 
the average stretching amplitude for a Morse potential dependent on a parameter q (generalized Morse potential). The emphasis is 
on the inverse relationship between of the average distance of a DNA breathing and the “q” values of the generalized Morse 
potential. 
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Introduction 

The equations of motion for DNA  are a system of discrete nonlinear Klein-Gordon (KG) 
equations (n=1, 2... N) 
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with )( nuV   being the derivative of the potential with respect the coordinate un wich represents 

the stretching of DNA. 

As a motivation we present our result developed in Matlab for the calculation of the average 
stretching amplitude of DNA for a Morse potential dependent on a parameter q: 
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(a)                                                           (b) 

Figure 1. Solution for the strength mean of the vibration of DNA (b) and  the generalized Morse 
depending of parameter q (a). 

The problem for charge transport in DNA model with solvent  interaction has been analysed  
from the point of view of numerical analysis. In our case we are concerned with the global weak 
solution from analytical the point of view. For that, we consider an abstract initial value problem. 

𝑈𝑡 = 𝐴𝑈 + 𝐹(𝑈)            (1.1)  

𝑈(0) = 𝑈0                         

Where 𝐴 will be a densely defined linear m-accretive operator in a Hilbert space 𝑋, with the 

norm ‖ ‖ , 𝐹:𝑋 → 𝑋 is a nonlinear mapping that will satisfy the condition of being globally 
Lipschitz continuous. Hence, we use the semigroup theory according (2), to obtain a family of 

operators  {�̃�(𝑡)}𝑡∈ℝ. That will play an important role in proving the existence.  

Méthod 

Numerical methods with software MATLAB:   The DNA vibrations of DNA are numerically 
resolved based on statistical physics, which allows us to estimate the average stretching 
amplitude of DNA.(1) 
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(a)                                                                (b) 

Figure 2.   Energy localizations with the ground state wave function 0  for the Schrodinger 

equation   (a) and the mean of the displacements (b) using the formula: uduu 0
2




    (1.2)   

Abstracts methods with semigroup theory: We consider  𝐴 as being an operator defined in a 

Hilbert space 𝐻 for the scalar product (( , )) and equipped with the norm ‖ ‖, with domain 

𝐷(𝐴).  We say that the operator 𝐴 is accretive in 𝐻 if  

‖𝑢 + 𝜆𝐴𝑢‖ ≥ ‖𝑢‖, 

for all 𝑢 ∈ 𝐷(𝐴) and all 𝜆 > 0. 

Hence, we say that an operator 𝐴 in a Hilbert space 𝐻 is m-accretive if the following holds  

i) A is accretive 

ii) For all 𝜆 > 0and all 𝑓 ∈ 𝐻, there exists 𝑢 ∈ 𝐷(𝐴) such that  

𝑢 + 𝜆𝐴𝑢 = 𝑓 

Which is an underlying partial differential equation. It follows easily from the definition that if 

𝐴 is an m-accretive operator in 𝐻, the mapping  𝑓 ↦ 𝑢  is a contraction 𝐻 → 𝐻, and is one to 

one 𝐻 → 𝐷(𝐴) more precisely the above mapping is denoted by 𝐽𝜆(𝐴), or (𝐼 + 𝜆𝐴)−1. We have 

𝐽𝜆 ∈ ℒ(𝐻) , ‖𝐽𝜆‖𝐽𝜆 ≤ 1, and 𝑅(𝐽𝜆) = 𝐷(𝐴).  𝐽𝜆 is called the resolvent of 𝐴 and  𝐴𝜆 is the Yosida 

approximation of 𝐴, defined by 𝐴𝜆 = 𝜆
−1(𝐼 − 𝐽𝜆). It is clear that the graph 𝐺(𝐴) is closed in 

𝐻 × 𝐻, 𝐷(𝐴) ↪ 𝐻. (9). 

The notation to be used is mostly standard. 

Charge Transport In A DNA Model With Solvent Interaction 

 

𝝀𝒕𝒕 + 𝑐0𝜕𝑥
2𝜆 + 𝐴𝜆 + 𝐵𝜆2 +Wgλ3 + 𝑐2|𝜑|

2 = 0           (2.1) 
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ψ𝒕𝒕 + 𝑐1𝜕𝑥
2ψ+ 𝑄3𝜆ψ + 𝑄4𝜆

2ψ− 𝛾𝛽ψλ3 + 𝑄5ψ = 0    (2.2) 

i 𝜑𝑡  =  𝑃1𝜕𝑥
2𝜑 + Q1𝜑 + Q2λϕ         (2.3) 

With initial conditions 

      𝜑(𝑥, 0) = 𝜑0(𝑥) , 𝜆(𝑥, 0) = 𝜆0(𝑥) , 𝜆𝑡(𝑥, 0) = 𝜆
1(𝑥) , 

      ψ(𝑥, 0) = ψ0(𝑥),  ψ𝑡(𝑥, 0) = ψ
1(𝑥)      (2.4) 

 

After making a variable change, the system (2.1) − (2.4) is equivalent to the first order system 

             𝑈𝑡 = 𝒜𝑈 + 𝐹(𝑈)                (2.2)  

𝑈(0) = 𝑈0                         

Where  

𝒜 =

(

 
 

0 𝐼 0
−𝑐0𝜕𝑥

2 − 𝐴 0 0
0
0
0

0
0
0

0
−𝑐1𝜕𝑥

2

0

   0 0
   0 0
    𝐼
−𝑄5 0
    0

0
0

−𝑖𝑃1𝜕𝑥
2 − 𝑖𝑄1)

 
 
= (

𝐴1 0 0
0 𝐴2 0
0 0 𝐴3

)   

(2.3) 

𝐴1 = (
0 𝐼

−𝑐0𝜕𝑥
2 − 𝐴 0

)  , 𝐴2 = (
0 𝐼

−𝑐1𝜕𝑥
2 − 𝑄5 0

)  , 𝐴3 = −𝑖𝑃1𝜕𝑥
2 − 𝑖𝑄1 

 

According (3), We recall that  the operator 𝐴1 is the infinitesimal generator of a 𝐶0 group of 

operators on 𝐻1(ℝ) × 𝐿2(ℝ) ,more precisely {𝑇(𝑡)}𝑡∈ℝ and the same thing happens with the 

operator  𝐴2 , while for operator 𝐴3 , we apply Stone’s theorem which it is verified that it is an 

infinitesimal generator of a 𝐶0 group of unitary operators on 𝐿2(ℝ) , that is {𝑆(𝑡)}𝑡∈ℝ. (8) 

 𝑈 =

(

 
 

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5)

 
 
        (2.4) 

 

Note that 𝑢5 is a complex valued function. 

𝐹(𝑈) =

(

 
 

0
−𝐵𝑢1

2−𝑊𝑔𝑢1
3 − 𝑐2|𝑢5|

2

0
−𝑄3𝑢1𝑢3 − 𝑄4𝑢1

2𝑢3 − 𝛾𝛽𝑢1
3

−𝑖𝑄2𝑢1𝑢5 )

 
 
       (2.5) 
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In addition, 

 

𝑊𝑔 =
4𝑎2𝐷

𝑚
  , 𝛼0 =

3𝑎√2

2
  , 𝑐0 = −

𝑘

𝑚
 , 𝑐1 =

−𝜉

𝐼
  , 𝛾 =

7𝑎2

3
 

 

𝛽 =
𝑚𝑊𝑔√2

2𝐼
  , 𝑄1 = −

𝑉

ℎ
 , 𝑄2 =

𝜒

ℎ
  , 𝑃1 = −

2𝑉

ℎ
 , 𝑐3 =

𝜒

𝑚
, 𝐴 =

8𝑟𝐷𝑗𝑓𝑠

𝑙𝑠
3 +𝑊𝑔 

𝐵 = 𝛼0𝑊𝑔 +
2√2𝐷𝑗𝑓𝑠

𝑙𝑠
3  , 𝑄4 =

−4𝑟𝐷𝑗𝑓𝑠

𝑙𝑠
3 + 𝛽𝛼0 , 𝑄5 =

2𝑟𝐷𝑗𝑓𝑠

𝑚𝑙𝑠
 (1 −

4𝑟2

𝑙𝑠
2 ) 

𝑄3 =
8√2𝑟2𝐷𝑗𝑓𝑠

𝑙𝑠
3 − 𝛽 

 

In order to use the theory of semigroups, we define a suitable Hilbert space 𝑋 =
(𝐻1(ℝ) × 𝐿2(ℝ))2 × 𝐿2(ℝ). 

Given a vector 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5] ∈ (𝐶0
∞(ℝ))

5
, we define the norm 

‖𝑈‖𝑋 = (∫ |𝑢1|
2 + |𝜕𝑥𝑢1|

2 + |𝑢2|
2

ℝ
+ |𝑢3|

2 + |𝜕𝑥𝑢3|
2 + |𝑢4|

2 + |𝑢5|
2 +

|𝜕𝑥𝑢5|
2𝑑𝑥)

1/2
   (2.6)  

It follows easily that the completion of  (𝐶0
∞(ℝ))

5
 with respect to the norm ‖ .  ‖𝑋 is the Hilbert 

space 𝑋. 

Definition 1.- We define the operator 𝒜 associated with the differential operator given in the 

relation (2.3) as follows,  

𝒜:𝐷(𝒜) ⊂ 𝑋 → 𝑋 

Where 𝐷(𝒜) = (𝐻2(ℝ) × 𝐻1(ℝ))2 ×𝐻2(ℝ) and for every 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5] ∈ 𝐷(𝒜) 
let 

𝒜𝑈 = [𝑢2, −𝑐0𝜕𝑥
2𝑢1 − 𝐴, 𝑢4, −𝑐1𝜕𝑥

2𝑢3 − 𝑄5, −𝑖𝑃1𝜕𝑥
2𝑢5 − 𝑖𝑄1𝑢5] ∈ (𝐻

1(ℝ) × 𝐿2(ℝ))
2
×

𝐻2(ℝ) ). 

With the same arguments given in (4) , we get that for every 𝑓 ∈ 𝑋 and real 𝜆 conveniently 
chosen, we have that the equation  

𝑈 − 𝜆𝒜𝑈 = 𝑓 

Has a unique solution ∈ 𝐷(𝒜) , such that ‖𝑈‖𝑋 ≤ 𝐶‖𝐹‖𝑋 , for some constant 𝐶 > 0. In addition 

the operator 𝐴 defined in the relation (2.7) is the infinitesimal generator of a 𝐶0 group on (𝒜) , 
more precisely {�̃�(𝑡)}𝑡∈ℝ , satisfying (10). 

‖�̃�(𝑡)‖
𝑋
≤ 𝐶‖𝐹‖𝑋 
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On the other hand, for the nonlinearity, one shows that 𝐹:𝑋 → 𝑋 es Lipschitziana, in fact for 

every  𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5], 𝑉 = [𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5] ∈ 𝑋 

𝐹(𝑈) − 𝐹(𝑉) =

(

 
 

0
−𝐵𝑢1

2−𝑊𝑔𝑢1
3 − 𝑐2|𝑢5|

2 − (−𝐵𝑣1
2−𝑊𝑔𝑣1

3 − 𝑐2|𝑣5|
2)

0
−𝑄3𝑢1𝑢3 − 𝑄4𝑢1

2𝑢3 − 𝛾𝛽𝑢1
3 − (−𝑄3𝑣1𝑣3 − 𝑄4𝑣1

2𝑣3 − 𝛾𝛽𝑣1
3)

−𝑖𝑄2𝑢1𝑢5 − (−𝑖𝑄2𝑣1𝑣5) )

 
 

  

Hence, applying the norm given in the relation (2.6), we have 

‖𝐹(𝑈) − 𝐹(𝑉)‖𝑋
2 = ‖−𝑊𝑔(𝑢1 − 𝑣1 − 𝛼0(𝑢1

2 − 𝑣1
2) + 𝛾2(𝑢1

3 − 𝑣1
3) − 𝑐3(|𝑢5|

2 − |𝑣5|
2‖
𝐿2
2

+ 

+‖𝛽(𝑢1𝑢3 − 𝛼0𝑢1
2𝑢3 + 𝛾2𝑢1

3𝑢3) − 𝛽(𝑣1𝑣3 − 𝛼0𝑣1
2𝑣3 + 𝛾2𝑣1

3𝑣3)‖𝐿2
2
+ 

+‖(𝑄1(𝑢5 − 𝑄2𝑢1𝑢5) + (𝑄1(𝑣5 − 𝑄2𝑣1𝑣5)‖𝐿2
2 + 

+‖𝜕𝑥[(𝑄1(𝑢5 − 𝑄2𝑢1𝑢5) + (𝑄1(𝑣5 −𝑄2𝑣1𝑣5)]‖𝐿2
2  

 

After adding and subtracting terms and applying some estimates such a Sobolev embedding 
theorems , Cauchy- Schwartz inequalities and thus some other elementary inequalities of 

Sobolev spaces. It yields that there exists a constant 𝐶 > 0, such that (5). 

‖𝐹(𝑈) − 𝐹(𝑉)‖𝑋 ≤ 𝐶[‖𝑢1 − 𝑣1‖𝐿2
2 + ‖𝜕𝑥(𝑢1 − 𝑣1)‖𝐿2

2 + ‖𝑢2 − 𝑣2‖𝐿2
2 + ‖𝑢3 − 𝑣3‖𝐿2

2 +

+ ‖𝜕𝑥(𝑢3 − 𝑣3)‖𝐿2
2  +‖𝑢4 − 𝑣4‖𝐿2

2 + ‖𝑢5 − 𝑣5‖𝐿2
2 + ‖𝜕𝑥(𝑢5 − 𝑣5)‖𝐿2

2 ] 
Hence, we have 

‖𝐹(𝑈) − 𝐹(𝑉)‖𝑋 ≤ 𝐶‖𝑈 − 𝑉‖𝑋 , for all 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5], 𝑉 = [𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5] ∈ 𝑋. 

Results and Discussions  

Theorem 1. Given any 𝑈0 ∈ 𝑋 , there exists a unique global weak solution 𝑈 for the system 

(2.2) in the sense that 𝑈 ∈ 𝐶0([0, +∞),𝑋) and  

𝑈(𝑡) = �̃�(𝑡)𝑈0 + ∫ �̃�(𝑡 − 𝜎)
𝑡

0
𝐹(𝑈(𝜎))𝑑𝜎  ,    ∀𝑡 ≥ 0                     (3.1)  

In addition, there is continuous dependence of 𝑈 with respect to 𝑈0 

‖𝑈(𝑡) − 𝑉(𝑡)‖𝑋 ≤ 𝑒
𝑐𝑡‖𝑈0 − 𝑉0‖𝑋   for all  𝑡 ≥ 0 , where 𝑉(𝑡) is the solution of the system 

(2.2) with the initial value 𝑉0. 

Morever, if 𝑈0 ∈ 𝐷(𝒜) then 𝑈 is Lipschitz continuous on bounded sets of [0, +∞);that is, for 

every 𝑇 < ∞ there exists a constant 𝑀𝑇 > 0  such that 

‖𝑈(𝑡1) − 𝑈(𝑡2)‖𝑋 ≤ 𝑀𝑇|𝑡1 − 𝑡2|  for all 0 ≤ 𝑡1, 𝑡2  ≤ 𝑇 

Proof 

For the uniqueness, we consider 𝑈 and 𝑉 two solutions of the system (2.2). Then we have 
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‖𝑈(𝑡) − 𝑉(𝑡)‖𝑋 ≤ 𝐶∫‖𝑈(𝜎) − 𝑉(𝜎)‖𝑋𝑑𝜎

𝑡

0

 

Thus by Gronwall’s inequality, 

‖𝑈(𝑡) − 𝑉(𝑡)‖𝑋 ≤ 𝑒
𝑐𝑇‖𝑈0 − 𝑉0‖𝑋 = 0 

Whereas the existence is proved by using the contraction mapping principle in the space  

𝐵 = {𝑈 ∈ 𝐶0([0,+∞),𝑋); Sup
𝑡≥0

𝑒−𝑘𝑡‖𝑈(𝑡)‖𝑋 < ∞} 

Where 𝑘 > 0 is to be chosen.  𝐵 equipped with the norm  

‖𝑈(𝑡)‖𝐵 = Sup
                                    𝑡≥0

𝑒−𝑘𝑡‖𝑈(𝑡)‖𝑋 

Is a Banach space, and so we consider the mapping 

Φ(𝑈)(𝑡) = �̃�(𝑡)𝑈0 +∫ �̃�(𝑡 − 𝜎)

𝑡

0

𝐹(𝑈(𝜎))𝑑𝜎   

It follows easily that 

‖Φ(𝑈) − Φ(𝑉)‖𝐵 ≤
𝐶

𝑘
‖𝑈 − 𝑉‖𝐵 

Choosing any > 𝐶 , we conclude that Φ has a fixed point 𝑈 ∈ 𝐵 , which is a solution of the 

equation (3.1). 

On the other hand, for continuous dependency, we assume that 𝑈 and 𝑉 are two solutions of the 

system (2.2) associated to the initial values 𝑈0 and 𝑉0 , respectively. Then (6). 

‖𝑈(𝑡) − 𝑉(𝑡)‖𝑋 ≤ ‖𝑈0 − 𝑉0‖𝑋 + 𝐶∫‖𝑈(𝜎) − 𝑉(𝜎)‖𝑋

𝑡

0

𝑑𝜎   

It follows from Gronwall’s inequality 

‖𝑈(𝑡) − 𝑉(𝑡)‖𝑋 ≤ 𝑒
𝑐𝑡‖𝑈0 − 𝑉0‖𝑋 

In a similar way, about the Lipschitz continuity when 𝑈0 ∈ 𝐷(𝒜). Let ℎ > 0, we have that 

 𝑈(𝑡 + ℎ) is the weak solution of the system (2.2) with the initial value 𝑈(ℎ) , from the 
continuous dependence, we obtain 

‖𝑈(𝑡 + ℎ) − 𝑈(𝑡)‖𝑋 ≤ 𝑒
𝑐𝑡‖𝑈(ℎ) − 𝑈(0)‖𝑋  ,  for all 𝑡 ≥ 0 

Furtheremore, we have 

U(ℎ) = �̃�(ℎ)𝑈0 +∫ �̃�(ℎ − 𝜎)

𝑡

0

𝐹(𝑈(𝜎))𝑑𝜎   

And so 
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‖𝑈(ℎ) − 𝑈0‖𝑋 ≤ ‖�̃�(ℎ)𝑈0 − 𝑈0‖𝑋 + ℎ Sup
0<𝜎<ℎ

‖𝐹(𝑈(𝜎))‖𝑋 ≤ 

≤ ℎ‖𝒜𝑈0‖𝑋 + ℎ Sup
0<𝜎<ℎ

‖𝐹(𝑈(𝜎))‖𝑋 ≤ 

By using  

‖
�̃�(𝑡)𝑈 − 𝑈

𝑡
‖
𝑋

≤ ‖𝒜𝑈‖𝑋     ,   for all 𝑡 ≥ 0 

‖𝑈(𝑡)‖𝑋 ≤ ‖𝑈0‖𝑋 +∫‖𝐹(𝑈(𝜎))‖𝑋

𝑡

0

𝑑𝜎 ≤  ‖𝑈0‖𝑋 + 𝑡‖𝐹(0)‖𝑋 + 𝐶∫‖𝑈(𝜎)‖𝑋

𝑡

0

𝑑𝜎 

By Gronwall’s inequality, this implies that 

‖𝑈(𝑡)‖𝑋 ≤ 𝑒
𝑐𝑡[‖𝑈0‖𝑋 + ‖𝐹(0)‖𝑋] 

And so,  

𝐒𝐮𝐩
𝟎<𝝈<𝒉

‖𝑭(𝑼(𝝈))‖𝑿 ≤ ‖𝑭(𝟎)‖𝑿 + 𝑪𝒆
𝒄𝒉[‖𝑼𝟎‖𝑿 + 𝒉‖𝑭(𝟎)‖𝑿] 

Hence, it follows the result. 

 

The case that  𝐹:𝑋 → 𝑋 is globally Lipschitz continuous allows to use Banach´s fixed point 
contraction theorem, precisely defining a mapping to obtain the mild solution. On the other hand, 
both the uniqueness and the continuous dependence of the data make strong use of the Gonwall 
inequality, including the result. 

Conclusions 

We have achieved a result of existence and uniqueness in the weak sense such as one shows in 
the theorem 1. Which the theory of semigroups was strongly applied. 

The dynamic software developed in Matlab allow us to simulate vibrations for each temperature 
input and generalized Morse potential dependent on the poarameter q. We can also find a inverse 
correspondence law. That is, to emphasize that there is an inverse relationship between of the 
average distance of a DNA breathing and the “q” values of the generalized Morse potential. 
Dynamic software in Matlab helps solve bioinformatics problems and represents and educational 
strategy in today’s world. 
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